Separable filter

A separable filter in image processing can be written as product of two more simple filters. Typically a 2-dimensional convolution operation is separated into 2 onedimensional filters. This reduces the cost of computing the operator.

Examples

1. A twodimensional smoothing filter is separated in this sample:


\frac{1}{3}
\begin{bmatrix} 
    1 \\ 1 \\ 1  
\end{bmatrix} 
*
\frac{1}{3}
\begin{bmatrix} 
    1 & 1 & 1
\end{bmatrix}

=

\frac{1}{9}
\begin{bmatrix} 
    1 & 1 & 1 \\ 
    1 & 1 & 1 \\
    1 & 1 & 1
\end{bmatrix}

2. Gaussian blur (smoothing)


\frac{1}{4}
\begin{bmatrix} 
    1 \\ 2 \\ 1  
\end{bmatrix} 
*
\frac{1}{4}
\begin{bmatrix} 
    1 & 2 & 1
\end{bmatrix}

=

\frac{1}{16}
\begin{bmatrix} 
    1 & 2 & 1 \\ 
    2 & 4 & 2 \\
    1 & 2 & 1
\end{bmatrix}

3. Sobel operator (edge detection)


\mathbf{G_x} = \begin{bmatrix} 
\quad~ & \quad~ & \quad~ \\[-2.5ex]
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 
\end{bmatrix} * A =
\begin{bmatrix} 
    1 \\ 2 \\ 1  
\end{bmatrix} *
\begin{bmatrix} 
    +1 & 0 & -1
\end{bmatrix} * A

This works also for Prewitt operator.