Semipinacol rearrangement

The semipinacol rearrangement is a rearrangement reaction in organic chemistry involving a heterosubstituted alcohol of the type R1R2(HO)C–C(X)R3R4. The hetero substituent can be a halogen (Cl, Br, I), a tosylate, a mesylate or a thiol group. This reaction proceeds by removal of the leaving group X forming a carbocation as electron deficient center. One of the adjacent alkyl groups then migrates to the positive carbon in a 1,2-shift. Simultaneously with the shift, a pi bond forms from the oxygen to carbon, assisting in driving the migrating group off its position. The result is a ketone or aldehyde.[1] In another definition all semipinacol rearrangements "share a common reactive species in which an electrophilic carbon center, including but not limited to carbocations, is vicinal to an oxygen-containing carbon and can drive the 1,2-migration of a C–C or C–H bond to terminate the process, generating a carbonyl group ".[2]

The rearrangement reaction can be classified into 4 types. Type 1 concerns all 2-heterosubstituted alcohols. Substrates in type 2 rearrangements are allyl alcohols. The carbocation is formed by electrophilic addition to the alkene group with electrophiles such as halonium ions, Brønsted acids and Lewis acids. In type 3 the substrates are epoxides, notably 2,3-epoxy-alcohols and type 4 concerns the reactions of alpha hydroxyketones and alpha hydroxy imines. Reactions of type 4 are also called acyloin rearrangements.

While similar to the pinacol rearrangement, the semipinacol rearrangement differs from the pinacol rearrangement in that the cation is not formed from a vicinal 1,2-diol. With diazoalcohols the reaction is known as the Tiffeneau–Demjanov rearrangement.

References

  1. Strategic applications of named reactions in organic synthesis: background and detailed mechanisms László Kürti, Barbara Czakó 2005
  2. Semipinacol Rearrangement in Natural Product Synthesis Zhen-Lei Song, Chun-An Fan, Yong-Qiang Tu Chemical Reviews doi:10.1021/cr200055g