SciPy

Not to be confused with ScientificPython.
SciPy
PSD of ECG using SciPy
Original author(s) Travis Oliphant, Pearu Peterson, Eric Jones
Developer(s) Community library project
Initial release Around 2001
Stable release 0.15.0 / 11 January 2015
Written in Python, Fortran, C, C++[1]
Operating system Cross-platform (list)
Type Technical computing
License BSD-new license
Website www.scipy.org

SciPy (pronounced “Sigh Pie”) is an open source Python library used by scientists, analysts, and engineers doing scientific computing and technical computing.

SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

SciPy builds on the NumPy array object and is part of the NumPy stack which includes tools like Matplotlib, pandas and SymPy. There is an expanding set of scientific computing libraries that are being added to the NumPy stack everyday. This NumPy stack has similar users to other applications such as MATLAB, GNU Octave, and Scilab. The NumPy stack is also sometimes referred to as the SciPy stack.[2]

SciPy is also a family of conferences for users and developers of these tools: SciPy (in the United States), EuroSciPy (in Europe) and SciPy.in (in India).[3] Enthought originated the SciPy conference in the United States and continues to sponsors many of the international conferences as well as host the SciPy website.

The SciPy library is currently distributed under the BSD license, and its development is sponsored and supported by an open community of developers. It is also supported by Numfocus which is a community foundation for supporting reproducible and accessible science.

Python Scientific Computing Environment

A typical Python Scientific Computing Environment includes many dedicated software tools. For example,

The SciPy Library/Package

The SciPy package of key algorithms and functions core to Python's scientific computing capabilities. Available sub-packages include:

Snapshot showing SciPy ndimage source code

Data structures

The basic data structure used by SciPy is a multidimensional array provided by the NumPy module. NumPy provides some functions for linear algebra, Fourier transforms and random number generation, but not with the generality of the equivalent functions in SciPy. NumPy can also be used as an efficient multi-dimensional container of data with arbitrary data-types. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. Older versions of SciPy used Numeric as an array type, which is now deprecated in favor of the newer NumPy array code.[6]

History of SciPy

In the 1990s, Python was extended to include an array type for numerical computing called Numeric (This package was eventually replaced by Travis Oliphant who wrote NumPy in 2006 as a blending of Numeric and Numarray which had been started in 2001). In 1999, Travis Oliphant created a large collection of extension modules to enable scientific computing with Python and helped Pearu Peterson write f2py which enabled easily extending Python with Fortran code. This effort formed the foundation of SciPy. In 2001, Travis Oliphant and Pearu Peterson merged their efforts with a few modules that Eric Jones had written, and called the resulting package SciPy. The newly created package provided a standard collection of common numerical operations on top of the Numeric array data structure. Shortly thereafter, Fernando Pérez released IPython, an enhanced interactive shell widely used in the technical computing community, and John Hunter released the first version of Matplotlib, the 2D plotting library for technical computing. Since then the SciPy environment has continued to grow with more packages and tools for technical computing.[7][8][9]

See also

External links

Notes