Salt spray test
The salt spray test is a standardized and popular corrosion test method, used to check corrosion resistance of materials and surface coatings. Usually, the materials to be tested are metallic and finished with a surface coating which is intended to provide a degree of corrosion protection to the underlying metal. Salt spray testing is an accelerated corrosion test that produces a corrosive attack to coated samples in order to predict the suitability of the coating in use as a protective finish. The appearance of corrosion products (oxides) is evaluated after a period of time. Test duration depends on the corrosion resistance of the coating; generally, the more corrosion resistant the coating is, the longer the period of testing before the appearance of oxides. The salt spray test is one of the most wide-spread and long established corrosion tests. ASTM B117 was the first internationally recognized salt spray standard, originally published in 1939. This is still the most popular test world-wide today and has often been used as the basis for other salt spray test standards, such as ISO9227 and JIS Z 2371.
Application
Salt spray testing is popular because it is relatively inexpensive, quick, well standardized, and reasonably repeatable. There is, however, only a weak correlation between the duration in salt spray test and the expected life of a coating (especially on hot dip galvanized steel where drying cycles are important for durability) since corrosion is a very complicated process and can be influenced by many external factors. The principle application of the salt spray test is therefore enabling quick comparisons to be made between actual and expected corrosion resistance. Most commonly, the time taken for oxides to appear on the samples under test is compared to expectations, to determine whether the test is passed or failed. For this reason the salt spray test is most often deployed in a quality audit role, where, for example, it can be used to check the effectiveness of a production process, such as the surface coating of a metallic part. The salt spray test has very little application in predicting how materials or surface coatings will resist corrosion in the real-world, because it does not create or accelerate real-world corrosive conditions. Cyclic corrosion testing (CCT) is much more suited to this application.
Testing equipment
The apparatus for testing consists of a closed testing cabinet/chamber, where a salt water solution is atomized by means of spray nozzle(s). This produces a corrosive environment of dense salt water fog (also referred to as a mist or spray) in the chamber, so that test samples exposed to this environment are subjected to severely corrosive conditions. Chamber volumes vary from supplier to supplier. If there is a minimum volume required by a particular salt spray test standard, this will be clearly stated and should be complied with. There is a general historical consensus that larger chambers can provide a more homogeneous testing environment.
Variations to the salt spray test solutions depend upon the materials to be tested. The most common test for steel based materials is the Neutral Salt Spray test (often abbreviated to NSS) which reflects the fact that this type of test solution is prepared to a neutral pH of 6.5 to 7.2 Results are represented generally as testing hours in NSS without appearance of corrosion products (e.g. 720 h in NSS according to ISO 9227). Other test solutions have other chemicals added including acetic acid (often abbreviated to ASS) and acetic acid with copper chloride (often abbreviated to CASS) each one chosen for the evaluation of decorative coatings, such as electroplated copper-nickel-chromium, electroplated copper-nickel or anodized aluminium. These acidified test solutions generally have a pH of 3.1 to 3.3
Some sources do not recommend using ASS or CASS test cabinets interchangeably for NSS tests, due to the risk of cross-contamination, it is claimed that a thorough cleaning of the cabinet after ASS or CASS test is very difficult. ASTM does not address this issue, but ISO 9227 does not recommend it and if it is to be done, advocates a thorough cleaning.
Although the majority of salt spray tests are continuous, ie; the samples under test are exposed to the continuous generation of salt fog for the entire duration of the test, a few do not require such exposure. Such tests are commonly referred to as modified salt spray tests. ASTM G85 is an example of a test standard which contains several modified salt spray tests which are variations to the basic salt spray test.
Standardization
Chamber construction, testing procedure and testing parameters are standardized under national and international standards, such as ASTM B 117 and ISO 9227. These standards describe the necessary information to carry out this test; testing parameters such as temperature, air pressure of the sprayed solution, preparation of the spraying solution, concentration, pH, etc. Daily checking of testing parameters is necessary to show compliance with the standards, so records shall be maintained accordingly. ASTM B117 and ISO 9227 are widely used as reference standards. Testing cabinets are manufactured according to the specified requirements here. However, these testing standards neither provide information of testing periods for the coatings to be evaluated, nor the appearance of corrosion products in form of salts. Requirements shall be agreed between customer and manufacturer. In the automotive industry requirements are specified under material specifications. Different coatings have different behavior in salt spray test and consequently, test duration will differ from one type of coating to another. For example, a typical electroplated zinc and yellow passivated steel part lasts 96 hours in salt spray test without white rust. Electroplated zinc-nickel steel parts can last more than 720 hours in NSS test without red rust (or 48 hours in CASS test without red rust) Requirements are established in test duration (hours) and coatings shall comply with minimum testing periods.
Artificial seawater which is sometimes used for Salt Spray Testing can be found at ASTM International. The standard for Artificial Seawater is ASTM D1141-98 which is the standard practice for the preparation of substitute ocean water.
Uses
Typical coatings that can be evaluated with this method are:
- Phosphated surfaces (with subsequent paint/primer/lacquer/rust preventive)
- Zinc and zinc-alloy plating (see also electroplating). See ISO 4042 for guidance
- Electroplated chromium, nickel, copper, tin
- Coatings not applied electrolytically, such as zinc flake coatings according to ISO 10683
- Organic coatings
- Paint Coating
Hot-dip galvanized surfaces are not generally tested in a salt spray test (see ISO 1461 or ISO 10684). Hot-dip galvanizing produces zinc carbonates when exposed to a natural environment, thus protecting the coating metal and reducing the corrosion rate. The zinc carbonates are not produced when a hot-dip galvanized specimen is exposed to a salt spray fog, therefore this testing method does not give an accurate measurement of corrosion protection. ISO 9223 gives the guidelines for proper measurement of corrosion resistance for hot-dip galvanized specimens.
Painted surfaces with an underlying hot-dip galvanized coating can be tested according to this method. See ISO 12944-6.
Testing periods range from a few hours (e.g. 8 or 24 hours of phosphated steel) to more than a month (e.g. 720 hours of zinc-nickel coatings, 1000 hours of certain zinc flake coatings).
Bibliography
- Metal Finishing. Guidebook and directory issue. Published by Metal Finishing Magazine, 1996
See Also
- Cyclic corrosion testing
- Japanese Industrial Standards
- ASTM International
- International Organization for Standardization
Further reading
- ASTM American Society for Testing of Materials. ASTM B 117-07a Standard Practice for Operating Salt Spray (Fog) Apparatus, 2007
- Deutsches Institut für Normung e.V. DIN 50021 Sprühnebelprüfungen mit verschiedenen Natriumchloridlösungen. Beuth Verlag GmbH, 1988. This standard has been superseded by ISO 9227 and it is only mentioned for bibliographic purposes
- ISO International Organization for Standardization. ISO 9227 Corrosion tests in artificial atmospheres—Salt spray tests, 2006
- ISO International Organization for Standardization. ISO 4628-3 Paints and varnishes. Evaluation of degradation of coatings. Designation of quantity and size of defects, and of intensity of uniform changes in appearance. Part 3 Assessment of degree of rusting
- MIL-STD-810 http://en.wikipedia.org/wiki/MIL-STD-810
- ASTM B117 Testing Questions and Answers [1]
- The use of ASTM B117 to evaluate stainless steels [2]
References
- ↑ "ASTM B117 Testing", G2MT Labs, retrieved 21 December 2014
- ↑ ASTM B117 Testing for Stainless (PDF), retrieved 21 December 2014