SLC2A6
Solute carrier family 2 (facilitated glucose transporter), member 6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||
Symbols | SLC2A6 ; GLUT6; GLUT9; HSA011372 | ||||||||||||
External IDs | OMIM: 606813 MGI: 2443286 HomoloGene: 69236 IUPHAR: 884 GeneCards: SLC2A6 Gene | ||||||||||||
| |||||||||||||
RNA expression pattern | |||||||||||||
More reference expression data | |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 11182 | 227659 | |||||||||||
Ensembl | ENSG00000160326 | ENSMUSG00000036067 | |||||||||||
UniProt | Q9UGQ3 | A2AR26 | |||||||||||
RefSeq (mRNA) | NM_001145099 | NM_001177627 | |||||||||||
RefSeq (protein) | NP_001138571 | NP_001171098 | |||||||||||
Location (UCSC) | Chr 9: 136.34 – 136.34 Mb | Chr 2: 27.02 – 27.03 Mb | |||||||||||
PubMed search | |||||||||||||
Solute carrier family 2, facilitated glucose transporter member 6 is a protein that in humans is encoded by the SLC2A6 gene.[1][2]
Hexose transport into mammalian cells is catalyzed by a family of membrane proteins, including SLC2A6, that contain 12 transmembrane domains and a number of critical conserved residues.[supplied by OMIM][2]
See also
References
- ↑ Doege H, Bocianski A, Joost HG, Schurmann A (Jan 2001). "Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes". Biochem J. 350 Pt 3 (Pt 3): 771–6. doi:10.1042/0264-6021:3500771. PMC 1221309. PMID 10970791.
- ↑ 2.0 2.1 "Entrez Gene: SLC2A6 solute carrier family 2 (facilitated glucose transporter), member 6".
Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y; Yoshitomo-Nakagawa K; Maruyama K et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Strausberg RL; Feingold EA; Grouse LH et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Richardson S; Neama G; Phillips T et al. (2003). "Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation". Osteoarthr. Cartil. 11 (2): 92–101. doi:10.1053/joca.2002.0858. PMID 12554125.
- Ota T; Suzuki Y; Nishikawa T et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Humphray SJ; Oliver K; Hunt AR et al. (2004). "DNA sequence and analysis of human chromosome 9". Nature 429 (6990): 369–74. doi:10.1038/nature02465. PMC 2734081. PMID 15164053.
- Gerhard DS; Wagner L; Feingold EA et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Otsuki T; Ota T; Nishikawa T et al. (2007). "Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries". DNA Res. 12 (2): 117–26. doi:10.1093/dnares/12.2.117. PMID 16303743.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
|