Rule of mixtures

The upper and lower bounds on the elastic modulus of a composite material, as predicted by the rule of mixtures. The actual elastic modulus lies between the curves.

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material made up of continuous and unidirectional fibers.[1][2][3] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, mass density, ultimate tensile strength, thermal conductivity, and electrical conductivity.[3] In general there are two models, one for axial loading (Voigt model),[2][4] and one for transverse loading (Reuss model).[2][5]

In general, for some material property E (often the elastic modulus[1]), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as

 E_c = fE_f + \left(1-f\right)E_m

where

In the case of the elastic modulus, this is known as the upper-bound modulus, and corresponds to loading parallel to the fibers. The inverse rule of mixtures states that in the direction perpendicular to the fibers, the elastic modulus of a composite can be as low as

E_c = \left(\frac{f}{E_f} + \frac{1-f}{E_m}\right)^{-1}.

If the property under study is the elastic modulus, this quantity is called the lower-bound modulus, and corresponds to a transverse loading.[2]

Derivation for elastic modulus

Upper-bound modulus

Consider a composite material under uniaxial tension \sigma_\infty. If the material is to stay intact, the strain of the fibers, \epsilon_f must equal the strain of the matrix, \epsilon_m. Hooke's law for uniaxial tension hence gives

\frac{\sigma_f}{E_f} = \epsilon_f = \epsilon_m = \frac{\sigma_m}{E_m}

 

 

 

 

(1)

where \sigma_f, E_f, \sigma_m, E_m are the stress and elastic modulus of the fibers and the matrix, respectively. Noting stress to be a force per unit area, a force balance gives that

\sigma_\infty = f\sigma_f + \left(1-f\right)\sigma_m

 

 

 

 

(2)

where f is the volume fraction of the fibers in the composite (and 1-f is the volume fraction of the matrix).

If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law \sigma_\infty = E_c\epsilon_c for some elastic modulus of the composite E_c and some strain of the composite \epsilon_c, then equations 1 and 2 can be combined to give

E_c\epsilon_c = fE_f\epsilon_f + \left(1-f\right)E_m\epsilon_m.

Finally, since \epsilon_c = \epsilon_f = \epsilon_m, the overall elastic modulus of the composite can be expressed as[6]

 E_c = fE_f + \left(1-f\right)E_m.

Lower-bound modulus

Now let the composite material be loaded perpendicular to the fibers, assuming that \sigma_\infty = \sigma_f = \sigma_m. The overall strain in the composite is distributed between the materials such that

\epsilon_c = f\epsilon_f + \left(1-f\right)\epsilon_m.

The overall modulus in the material is then given by

E_c = \frac{\sigma_\infty}{\epsilon_c} = \frac{\sigma_f}{f\epsilon_f + \left(1-f\right)\epsilon_m} = \left(\frac{f}{E_f} + \frac{1-f}{E_m}\right)^{-1}

since \sigma_f=E\epsilon_f, \sigma_m=E\epsilon_m.[6]

Other properties

Similar derivations give the rules of mixtures for

\left(\frac{f}{\rho_f} + \frac{1-f}{\rho_m}\right)^{-1} \leq \rho_c \leq f\rho_f + \left(1-f\right)\rho_m
\left(\frac{f}{\sigma_{UTS,f}} + \frac{1-f}{\sigma_{UTS,m}}\right)^{-1} \leq \sigma_{UTS,c} \leq f\sigma_{UTS,f} + \left(1-f\right)\sigma_{UTS,m}
\left(\frac{f}{k_f} + \frac{1-f}{k_m}\right)^{-1} \leq k_c \leq fk_f + \left(1-f\right)k_m
\left(\frac{f}{\sigma_f} + \frac{1-f}{\sigma_m}\right)^{-1} \leq \sigma_c \leq f\sigma_f + \left(1-f\right)\sigma_m

References

  1. 1.0 1.1 Alger, Mark. S. M. (1997). Polymer Science Dictionary (2nd ed.). Springer Publishing. ISBN 0412608707.
  2. 2.0 2.1 2.2 2.3 "Stiffness of long fibre composites". University of Cambridge. Retrieved 1 January 2013.
  3. 3.0 3.1 Askeland, Donald R.; Fulay, Pradeep P.; Wright, Wendelin J. (2010-06-21). The Science and Engineering of Materials (6th ed.). Cengage Learning. ISBN 9780495296027.
  4. Voigt, W. (1889). "Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper". Annalen der Physik 274: 573–587. Bibcode:1889AnP...274..573V. doi:10.1002/andp.18892741206.
  5. Reuss, A. (1929). "Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 9: 49–58. doi:10.1002/zamm.19290090104.
  6. 6.0 6.1 "Derivation of the rule of mixtures and inverse rule of mixtures". University of Cambridge. Retrieved 1 January 2013.

External links