Rhombitetrapentagonal tiling

Rhombitetrapentagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex figure4.4.5.4
Schläfli symbolrr{5,4}
Wythoff symbol4 | 5 2
Coxeter diagram
Symmetry group[5,4], (*542)
DualDeltoidal tetrapentagonal tiling
PropertiesVertex-transitive

In geometry, the rhombitetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,2{4,5}.

Dual tiling

The dual is called the deltoidal tetrapentagonal tiling with face configuration V.4.4.4.5.

Related polyhedra and tiling

Uniform pentagonal/square tilings
Symmetry: [5,4], (*542) [5,4]+, (542) [5+,4], (5*2) [5,4,1+], (*552)
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
Uniform duals
V54 V4.10.10 V4.5.4.5 V5.8.8 V45 V4.4.5.4 V4.8.10 V3.3.4.3.5 V3.3.5.3.5 V55
Dimensional family of expanded polyhedra and tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*42
[,4]
Expanded
figures
Coxeter
Schläfli

rr{3,4}

rr{4,4}

rr{5,4}

rr{6,4}

rr{7,4}

rr{8,4}

rr{,4}
Dual
(rhombic)
figures
configuration

V3.4.4.4

V4.4.4.4

5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V.4.4.4
Coxeter

References

See also

Wikimedia Commons has media related to Uniform tiling 4-4-4-5.

External links