Rhombitetrapentagonal tiling
Rhombitetrapentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 4.4.5.4 |
Schläfli symbol | rr{5,4} |
Wythoff symbol | 4 | 5 2 |
Coxeter diagram | |
Symmetry group | [5,4], (*542) |
Dual | Deltoidal tetrapentagonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,2{4,5}.
Dual tiling
The dual is called the deltoidal tetrapentagonal tiling with face configuration V.4.4.4.5.
Related polyhedra and tiling
Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | |
Uniform duals | ||||||||||
V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 |
Symmetry [n,4], (*n42) |
Spherical | Euclidean | Compact hyperbolic | Paracompact | |||
---|---|---|---|---|---|---|---|
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4] |
*∞42 [∞,4] | |
Expanded figures |
|||||||
Coxeter Schläfli |
rr{3,4} |
rr{4,4} |
rr{5,4} |
rr{6,4} |
rr{7,4} |
rr{8,4} |
rr{∞,4} |
Dual (rhombic) figures configuration |
V3.4.4.4 |
V4.4.4.4 |
5.4.4.4 |
V6.4.4.4 |
V7.4.4.4 |
V8.4.4.4 |
V∞.4.4.4 |
Coxeter |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-5. |
- Uniform tilings in hyperbolic plane
- List of regular polytopes
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|