Retrosplenial cortex
Retrosplenial cortex | |
---|---|
Medial surface of the brain with Brodmann's areas numbered. | |
Details | |
Latin | Regio retrosplenialis |
Identifiers | |
NeuroNames | ancil-111 |
Anatomical terms of neuroanatomy |
The retrosplenial cortex (RSC) is a cortical area in the brain which consists of Brodmann areas 29 and 30.[1][2] The region's name refers to its anatomical location immediately behind the splenium of the corpus callosum. There is a large amount of variation in the region's size across different species. In humans it comprises roughly 0.3% of the entire cortical surface whereas in rabbits it is at least 10%.[2]
Anatomy
The retrosplenial cortex has dense reciprocal projections with both the anterior thalamic nuclei and the hippocampus.
Function
In humans, fMRI studies implicate the retrosplenial cortex in a wide range of cognitive functions including episodic memory, navigation, imagining future events and processing scenes more generally.[3][4] Rodent studies suggest the region is important for using surrounding visual cues to carry out these tasks.[5][6][7] Retrosplenial cortex is particularly responsive to permanent, non-moving environmental landmarks[8][9] and is also implicated in using them to make spatial judgements.[10][11]
It has also been suggested that retrosplenial cortex may translate between egocentric (self-centred) and allocentric (world-centred) spatial information, based upon its anatomical location between the hippocampus (where there are allocentric place cell representations) and the parietal lobe (which integrates egocentric sensory information).[12]
Competitors in the World Memory Championships are able to perform outstanding feats of memory and show increased fMRI activation in their retrosplenial cortex than normal controls when doing so.[13] This is thought to be due to their use of a spatial learning strategy or mnemonic device known as the method of loci.
In rodents, around 8.5% of neurons in the retrosplenial cortex are head direction cells.[14][15] The region also displays slow-wave theta rhythmicity[16] and when people retrieve autobiographical memories, there is theta band interaction between the retrosplenial cortex and the medial temporal lobe.[17]
Pathology
The retrosplenial cortex is one of several brain areas that produces both an anterograde and retrograde amnesia when damaged.[18] People with lesions involving the retrosplenial cortex also display a form of topographical disorientation whereby they can recognise and identify environmental landmarks, but are unable to use them to orientate themselves.[19]
The retrosplenial cortex is one of the first regions to undergo pathological changes in Alzheimer's disease and its prodromal phase of mild cognitive impairment.[20][21][22]
Gallery
References
- ↑ Vann, Seralynne D.; Aggleton, John P.; Maguire, Eleanor A. (8 October 2009). "What does the retrosplenial cortex do?". Nature Reviews Neuroscience 10 (11): 792–802. doi:10.1038/nrn2733. PMID 19812579.
- ↑ 2.0 2.1 notes, K. Brodmann ; translated with editorial; Garey, an introduction by Laurence J. (2006). Brodmann's Localisation in the cerebral cortex the principles of comparative localisation in the cerebral cortex based on cytoarchitectonics (3rd ed.). New York: Springer. ISBN 978-0-387-26919-1.
- ↑ Spreng, R. Nathan; Mar, Raymond A.; Kim, Alice S. N. (March 2009). "The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis". Journal of Cognitive Neuroscience 21 (3): 489–510. doi:10.1162/jocn.2008.21029. PMID 18510452.
- ↑ Vann, Seralynne D.; Aggleton, John P.; Maguire, Eleanor A. (8 October 2009). "What does the retrosplenial cortex do?". Nature Reviews Neuroscience 10 (11): 792–802. doi:10.1038/nrn2733. PMID 19812579.
- ↑ Pothuizen, Helen H. J.; Davies, Moira; Albasser, Mathieu M.; Aggleton, John P.; Vann, Seralynne D. (September 2009). "Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats". European Journal of Neuroscience 30 (5): 877–888. doi:10.1111/j.1460-9568.2009.06881.x. PMID 19712100.
- ↑ Czajkowski, R.; Jayaprakash, B.; Wiltgen, B.; Rogerson, T.; Guzman-Karlsson, M. C.; Barth, A. L.; Trachtenberg, J. T.; Silva, A. J. (27 May 2014). "Encoding and storage of spatial information in the retrosplenial cortex". Proceedings of the National Academy of Sciences 111 (23): 8661–8666. doi:10.1073/pnas.1313222111.
- ↑ Yoder, Ryan M.; Clark, Benjamin J.; Taube, Jeffrey S. (November 2011). "Origins of landmark encoding in the brain". Trends in Neurosciences 34 (11): 561–571. doi:10.1016/j.tins.2011.08.004. PMID 21982585.
- ↑ Auger, Stephen D.; Mullally, Sinéad L.; Maguire, Eleanor A.; Baker, Chris I. (17 August 2012). "Retrosplenial Cortex Codes for Permanent Landmarks". PLoS ONE 7 (8): e43620. Bibcode:2012PLoSO...743620A. doi:10.1371/journal.pone.0043620. PMC 3422332. PMID 22912894.
- ↑ Auger, Stephen D.; Maguire, Eleanor A. (November 2013). "Assessing the mechanism of response in the retrosplenial cortex of good and poor navigators". Cortex 49 (10): 2904–2913. doi:10.1016/j.cortex.2013.08.002. PMID 24012136.
- ↑ Committeri, Giorgia; Galati, Gaspare; Paradis, Anne-Lise; Pizzamiglio, Luigi; Berthoz, Alain; LeBihan, Denis (November 2004). "Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location". Journal of Cognitive Neuroscience 16 (9): 1517–1535. doi:10.1162/0898929042568550. PMID 15601516.
- ↑ Galati, Gaspare; Pelle, Gina; Berthoz, Alain; Committeri, Giorgia (26 February 2010). "Multiple reference frames used by the human brain for spatial perception and memory". Experimental Brain Research 206 (2): 109–120. doi:10.1007/s00221-010-2168-8. PMID 20186405.
- ↑ Byrne, Patrick; Becker, Suzanna; Burgess, Neil (2007). "Remembering the past and imagining the future: A neural model of spatial memory and imagery". Psychological Review 114 (2): 340–375. doi:10.1037/0033-295X.114.2.340. PMID 17500630.
- ↑ Maguire, Eleanor A.; Valentine, Elizabeth R.; Wilding, John M.; Kapur, Narinder (16 December 2002). "Routes to remembering: the brains behind superior memory". Nature Neuroscience 6 (1): 90–95. doi:10.1038/nn988. PMID 12483214.
- ↑ Chen, Longtang L.; Lin, Lie-Huey; Green, Edward J.; Barnes, Carol A.; McNaughton, Bruce L. (September 1994). "Head-direction cells in the rat posterior cortex". Experimental Brain Research 101 (1): 8–23. doi:10.1007/BF00243212. PMID 7843305.
- ↑ Cho, J; Sharp, PE (February 2001). "Head direction, place, and movement correlates for cells in the rat retrosplenial cortex.". Behavioral neuroscience 115 (1): 3–25. doi:10.1037/0735-7044.115.1.3. PMID 11256450.
- ↑ Destrade, C; Ott, T (2 December 1982). "Is a retrosplenial (cingulate) pathway involved in the mediation of high frequency hippocampal rhythmical slow activity (theta)?". Brain Research 252 (1): 29–37. doi:10.1016/0006-8993(82)90975-1. PMID 6293657.
- ↑ Foster, B. L.; Kaveh, A.; Dastjerdi, M.; Miller, K. J.; Parvizi, J. (19 June 2013). "Human Retrosplenial Cortex Displays Transient Theta Phase Locking with Medial Temporal Cortex Prior to Activation during Autobiographical Memory Retrieval". Journal of Neuroscience 33 (25): 10439–10446. doi:10.1523/JNEUROSCI.0513-13.2013. PMID 23785155.
- ↑ Valenstein, E; Bowers, D; Verfaellie, M; Heilman, KM; Day, A; Watson, RT (December 1987). "Retrosplenial amnesia.". Brain : a journal of neurology 110 (6): 1631–46. doi:10.1093/brain/110.6.1631. PMID 3427404.
- ↑ Vann, Seralynne D.; Aggleton, John P.; Maguire, Eleanor A. (8 October 2009). "What does the retrosplenial cortex do?". Nature Reviews Neuroscience 10 (11): 792–802. doi:10.1038/nrn2733. PMID 19812579.
- ↑ Pengas, George; Hodges, John R.; Watson, Peter; Nestor, Peter J. (January 2010). "Focal posterior cingulate atrophy in incipient Alzheimer's disease". Neurobiology of Aging 31 (1): 25–33. doi:10.1016/j.neurobiolaging.2008.03.014. PMID 18455838.
- ↑ Pengas, George; Williams, Guy B.; Acosta-Cabronero, Julio; Ash, Tom W. J.; Hong, Young T.; Izquierdo-Garcia, David; Fryer, Tim D.; Hodges, John R.; Nestor, Peter J. (2012). "The relationship of topographical memory performance to regional neurodegeneration in Alzheimer's disease". Frontiers in Aging Neuroscience 4. doi:10.3389/fnagi.2012.00017.
- ↑ Tan, Rachel H.; Wong, Stephanie; Hodges, John R.; Halliday, Glenda M.; Hornberger, Michael (2013). "Retrosplenial Cortex (BA 29) Volumes in Behavioral Variant Frontotemporal Dementia and Alzheimers Disease". Dementia and Geriatric Cognitive Disorders 35 (3–4): 177–182. doi:10.1159/000346392. PMID 23406695.
|