Redmond–Sun conjecture
In mathematics, the Redmond–Sun conjecture, raised by Stephen Redmond and Zhi-Wei Sun in 2006, states that every interval [x m, y n] with x, y, m, n ∈ {2, 3, 4, ...} contains primes with only finitely many exceptions. Namely, those exceptional intervals [x m, y n] are as follows:
The conjecture has been verified for intervals [x m, y n] below 1012. It includes Catalan's conjecture and Legendre's conjecture as special cases. Also, it is related to the abc conjecture as suggested by Carl Pomerance.
External links
- Redmond-Sun conjecture at PlanetMath.org.
- Number Theory List (NMBRTHRY Archives) --March 2006
- Sequence A116086 in the On-Line Encyclopedia of Integer Sequences