Red algae

Red algae
Temporal range: Mesoproterozoic–present[1]
Scientific classification
Domain: Eukarya
(unranked): Archaeplastida
Division: Rhodophyta
Wettstein, 1922

Classification is currently disputed. See Taxonomy.

The red algae, or Rhodophyta (/rˈdɒfɨtə/ roh-DOF-fit-tə or /ˌrdəˈftə/ ROH-də-FY-tə; from Ancient Greek: ῥόδον rhodon, "rose" and φυτόν phyton, "plant"), are one of the oldest groups of eukaryotic algae,[2] and also one of the largest, with about 5,000–6,000 species[3] of mostly multicellular, marine algae, including many notable seaweeds. Other references indicate as many as 10,000 species;[4] more detailed counts indicate about 4,000 in about 600 genera (3,738 marine species in 546 genera and 10 orders (plus the unclassifiable); 164 freshwater species in 30 genera in eight orders).[5]

The red algae form a distinct group characterized by these attributes: eukaryotic cells without flagella and centrioles, using floridean polysaccharides as food reserves, with phycobiliproteins as accessory pigments (giving them their red color), and with chloroplasts lacking external endoplasmic reticulum and containing unstacked thylakoids.[4] Most red algae are also multicellular, macroscopic, marine, and have sexual reproduction. They often have alternation of generations and may have three generations rather than two.[6]

Many of the coralline algae, which secrete calcium carbonate and play a major role in building coral reefs, belong here. Red algae such as dulse (Palmaria palmata) and laver (nori/gim) are a traditional part of European and Asian cuisines and are used to make other products such as agar, carrageenans and other food additives.[7]

Habitat

Most rhodophytes are marine, although freshwater species are found; these generally prefer clean, running water, but with some exceptions.[8]

Fossil record

One of the oldest fossils identified as a red alga is also the oldest fossil eukaryote that belongs to a specific modern taxon. Bangiomorpha pubescens, a multicellular fossil from arctic Canada, strongly resembles the modern red alga Bangia despite occurring in rocks dating to 1.2 billion years ago.[1]

Red algae are important builders of limestone reefs. The earliest such coralline algae, the solenopores, are known from the Cambrian period. Other algae of different origins filled a similar role in the late Paleozoic, and in more recent reefs.

Calcite crusts, which have been interpreted as the remains of coralline red algae, date to the terminal Proterozoic.[9] Thallophytes resembling coralline red algae are known from the late Proterozoic Doushantuo formation.[10]

Taxonomy

In the system of Adl et al. 2005, the red algae are classified in the Archaeplastida, along with the glaucophytes and green algae plus land plants (Viridiplantae or Chloroplastida). The authors use a hierarchical arrangement where the clade names do not signify rank; the class name Rhodophyceae is used for the red algae. No subdivisions are given; the authors say, "Traditional subgroups are artificial constructs, and no longer valid."[11]

The system reflected the consensus in 2005. Many studies published since then have provided evidence that is in agreement.[12][13][14][15] However, other studies have suggested Archaeplastida is paraphyletic.[16][17] As of January 2011, the situation appears unresolved.

Below are other published taxonomies of the red algae, although none necessarily has to be used, as the taxonomy of the algae is still in a state of flux (with classification above the level of order having received little scientific attention for most of the 20th century).[18]

A major research initiative to reconstruct the Red Algal Tree of Life (RedToL) using phylogenetic and genomic approaches is funded by the National Science Foundation as part of the Assembling the Tree of Life Program.

Classification comparison

Classification system according to
Saunders and Hommersand 2004[18]
Classification system according to
Hwan Su Yoon et al. 2006[19]
Orders Multicelluar? Pit plugs? Example
  • Subkingdom Rhodoplantae
  • Phylum Rhodophyta Wettstein
    • Subphylum Cyanidiophytina subphylum novus
Cyanidiales No No Cyanidioschyzon merolae
  • Phylum Rhodophyta Wettstein
  • Subphylum Rhodophytina subphylum novus
Rhodellales No No Rhodella
Compsopogonales, Rhodochaetales, Erythropeltidales Yes No Compsopogon
Rufusiales, Stylonematales Yes No Stylonema

Bangiales

Yes Yes Bangia, "Porphyra"

Porphyridiales

No No Porphyridium cruentum
  • Class Florideophyceae Cronquist
    • Subclass Hildenbrandiophycidae
  • Class Florideophyceae Cronquist
Hildenbrandiales Yes Yes Hildenbrandia
  • Subclass Nemaliophycidae
Batrachospermales, Balliales, Balbianiales, Nemaliales, Colaconematales, Acrochaetiales, Palmariales, Thoreales Yes Yes Nemalion
Rhodogorgonales, Corallinales Yes Yes Corallina officinalis
  • Subclass Ahnfeltiophycidae
Ahnfeltiales, Pihiellales Yes Yes Ahnfeltia
  • Subclass Rhodymeniophycidae
Bonnemaisoniales, Gigartinales, Gelidiales, Gracilariales, Halymeniales, Rhodymeniales, Nemastomatales, Plocamiales, Ceramiales Yes Yes Gelidium

Some sources (such as Lee) place all red algae into the class "Rhodophyceae". (Lee's organization is not a comprehensive classification, but a selection of orders considered common or important.[20])

Species of red algae

Around 6,500 to 10,000 species are known,[4][7] nearly all of which are marine, with about 200 that live only in fresh water. However, estimates of the number of real species vary by 100%.[4]

Some examples of species and genera of red algae are:

Genomes of red algae

Only 5 complete genomes of red algae are available, included 4 published in 2013.

There is no genome available almong Compsopogonophyceae, Rhodellophyceae and Stylonematophyceae.

Relationship to Chromalveolata chloroplasts

Chromalveolatas seem to have evolved from Bikonts that have acquired red algae as endosymbionts. According to this theory, over time these Bikonts and their endosymbiont red algae have evolved to become Chromalveolata and their chloroplasts. This part of endosymbiotic theory is supported by various structural and genetic similarities.[27]

Chemistry

Algal group δ13C range[28]
HCO3-using red algae 22.5 to 9.6
CO2-using red algae 34.5 to 29.9
Brown algae 20.8 to 10.5
Green algae 20.3 to 8.8

The δ13C values of red algae reflect their lifestyles. The largest difference results from their photosynthetic metabolic pathway: algae that use HCO3 as a carbon source have far more negative δ13C values than those that only use CO2.[28] An additional difference of about 1.71‰ separates groups intertidal from those below the lowest tide line, which are never exposed to atmospheric carbon. The latter group uses the more 13C-negative CO2 dissolved in sea water, whereas those with access to atmospheric carbon reflect the more positive signature of this reserve.

Red algae are red due to phycoerythrin. They contain the sulfated polysaccharide carrageenan in the amorphous sections of their cell walls, although red algae from the genus Porphyra contain porphyran. They also produce a specific type of tannin called phlorotannins, but in lower amount than brown algae do.

Morphology

Red algae have double cell walls.[29] The outer layers contain the polysaccharides agarose and agaropectin that can be extracted from the cell walls by boiling as agar.[29] The internal walls are mostly cellulose.[29]

Pit connections and pit plugs

Main article: Pit connection

Pit connections

Pit connections and pit plugs are unique and distinctive features of red algae that form during the process of cytokinesis following mitosis. In red algae, cytokinesis is incomplete. Typically, a small pore is left in the middle of the newly formed partition. The pit connection is formed where the daughter cells remain in contact.

Shortly after the pit connection is formed, cytoplasmic continuity is blocked by the generation of a pit plug, which is deposited in the wall gap that connects the cells.

Connections between cells having a common parent cell are called primary pit connections. Because apical growth is the norm in red algae, most cells have two primary pit connections, one to each adjacent cell.

Connections that exist between cells not sharing a common parent cell are labeled secondary pit connections. These connections are formed when an unequal cell division produced a nucleated daughter cell that then fuses to an adjacent cell. Patterns of secondary pit connections can be seen in the order Ceramiales.

Pit plugs

After a pit connection is formed, tubular membranes appear. A granular protein, called the plug core, then forms around the membranes. The tubular membranes eventually disappear. While some orders of red algae simply have a plug core, others have an associated membrane at each side of the protein mass, called cap membranes. The pit plug continues to exist between the cells until one of the cells dies. When this happens, the living cell produces a layer of wall material that seals off the plug.

Function

The pit connections are thought to function as structural reinforcement, and as avenues for cell-to-cell communication and/or symplastic transport in red algae. While the presence of the cap membrane could inhibit this transport between cells, the tubular plug cores may serve as a means of transport.

Reproduction

The reproductive cycle of red algae may be triggered by factors such as day length.[2]

Fertilization

Red algae lack motile sperm. Hence, they rely on water currents to transport their gametes to the female organs – although their sperm are capable of "gliding" to a carpogonium's trichogyne.[2]

The trichogyne will continue to grow until it encounters a spermatium; once it has been fertilized, the cell wall at its base progressively thickens, separating it from the rest of the carpogonium at its base.[2]

Upon their collision, the walls of the spermatium and carpogonium dissolve. The male nucleus divides and moves into the carpogonium; one half of the nucleus merges with the carpogonium's nucleus.[2]

The polyamine spermine is produced, which triggers carpospore production.[2]

Spermatangia may have long, delicate appendages, which increase their chances of "hooking up".[2]

Life cycle

They display alternation of generations; in addition to gametophyte generation, many have two sporophyte generations, the carposporophyte-producing carpospores, which germinate into a tetrasporophyte – this produces spore tetrads, which dissociate and germinate into gametophytes.[2] The gametophyte is typically (but not always) identical to the tetrasporophyte.[30]

Carpospores may also germinate directly into thalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free-living) tetrasporophyte phase.[30] Tetrasporangia may be arranged in a row (zonate), in a cross (cruciate), or in a tetrad.[2]

The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form a cystocarp.[30]

These case studies may be helpful to understand some of the life histories algae may display:

In a simple case, such as Rhodochorton investiens:

In the Carposporophyte: a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores.

Carpospores germinate into gametophytes, which produce sporophytes. Both of these are very similar; they produce monospores from monosporangia "just below a cross wall in a filament"[2] and their spores are "liberated through apex of sporangial cell."[2]

The spores of a sporophyte produce either tetrasporophytes. Monospores produced by this phase germinate immediately, with no resting phase, to form an identical copy of parent. Tetrasporophytes may also produce a carpospore, which germinates to form another tetrasporophyte.[2]

The gametophyte may replicate using monospores, but produces sperm in spermatangia, and "eggs"(?) in carpogonium.[2]

A rather different example is Porphyra gardneri:

In its diploid phase, a carpospore can germinate to form a filamentous "conchocelis stage", which can also self-replicate using monospores. The conchocelis stage eventually produces conchosporangia. The resulting conchospore germinates to form a tiny prothallus with rhizoids, which develops to a cm-scale leafy thallus. This too can reproduce via monospores, which are produced inside the thallus itself.[2] They can also reproduce via spermatia, produced internally, which are released to meet a prospective carpogonium in its conceptacle.[2]

Human consumption

Some red algae are iridescent when not covered with water

Several species are important food crops, in particular members of the genus Porphyra, variously known as nori (Japan), gim (Korea), or laver (Britain). Dulse (Palmaria palmata)[31] is another important British species.[32] These rhodophyte foods are high in vitamins and protein and are easily grown; for example, nori cultivation in Japan goes back more than three centuries.

In East and Southeast Asia, agar is most commonly produced from Gelidium amansii.

See also

References

  1. 1.0 1.1 N. J. Butterfield (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology 26 (3): 386–404. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2. ISSN 0094-8373.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Lee, R.E. (2008). Phycology, 4th edition. Cambridge University Press. ISBN 978-0-521-63883-8.
  3. D. Thomas (2002). Seaweeds. Life Series. Natural History Museum, London. ISBN 0-565-09175-1.
  4. 4.0 4.1 4.2 4.3 W. J. Woelkerling (1990). "An introduction". In K. M. Cole & R. G. Sheath. Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 1–6. ISBN 0-521-34301-1.
  5. Dixon, Peter S. (1977). Biology of the Rhodophyta (Reprint. ed.). Koenigstein: Koeltz. ISBN 0-05-002485-X.
  6. http://autocww.colorado.edu/~toldy2/E64ContentFiles/AlgaeAndFungi/Algae.html
  7. 7.0 7.1 M. D. Guiry. "Rhodophyta: red algae". National University of Ireland, Galway. Archived from the original on 2007-05-04. Retrieved 2007-06-28.
  8. Eloranta, P.; Kwandrans, J. (2004). "Indicator value of freshwater red algae in running waters for water quality assessment" (PDF). International Journal of Oceanography and Hydrobiology. XXXIII (1): 47–54. ISSN 1730-413X.
  9. Grant, S. W. F.; Knoll, A. H.; Germs, G. J. B. (1991). "Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications". Journal of Paleontology (JSTOR) 65 (1): 1–18. JSTOR 1305691. PMID 11538648.
  10. Yun, Z.; Xun-lal, Y. (1992). "New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China". Lethaia 25 (1): 1–18. doi:10.1111/j.1502-3931.1992.tb01788.x.
  11. Adl, Sina M. et al. (2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists". Journal of Eukaryotic Microbiology 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873
  12. Fabien Burki, Kamran Shalchian-Tabrizi, Marianne Minge, Åsmund Skjæveland, Sergey I. Nikolaev, Kjetill S. Jakobsen, Jan Pawlowski (2007). Butler, Geraldine, ed. "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLoS ONE 2 (8): e790. doi:10.1371/journal.pone.0000790. PMC 1949142. PMID 17726520.
  13. Burki, Fabien; Inagaki, Yuji; Bråte, Jon; Archibald, John M.; Keeling, Patrick J.; Cavalier-Smith, Thomas; Sakaguchi, Miako; Hashimoto, Tetsuo; Horak, Ales; Kumar, Surendra; Klaveness, Dag; Jakobsen, Kjetill S.; Pawlowski, Jan; Shalchian-Tabrizi, Kamran (2009). "Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates". Genome Biology and Evolution 1: 231–8. doi:10.1093/gbe/evp022. PMC 2817417. PMID 20333193.
  14. Cavalier-Smith, Thomas (2009). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters 6 (3): 342–5. doi:10.1098/rsbl.2009.0948. PMC 2880060. PMID 20031978.
  15. Rogozin, I.B.; Basu, M.K.; Csürös, M. & Koonin, E.V. (2009). "Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes". Genome Biology and Evolution 1: 99–113. doi:10.1093/gbe/evp011. PMC 2817406. PMID 20333181.
  16. Kim, E.; Graham, L.E. & Graham, Linda E. (2008). Redfield, Rosemary Jeanne, ed. "EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata". PLoS ONE 3 (7): e2621. doi:10.1371/journal.pone.0002621. PMC 2440802. PMID 18612431
  17. Nozaki, H.; Maruyama, S.; Matsuzaki, M.; Nakada, T.; Kato, S. & Misawa, K. (2009). "Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes". Molecular Phylogenetics and Evolution 53 (3): 872–880. doi:10.1016/j.ympev.2009.08.015. PMID 19698794
  18. 18.0 18.1 G. W. Saunders & M. H. Hommersand (2004). "Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data". American Journal of Botany 91 (10): 1494–1507. doi:10.3732/ajb.91.10.1494.
  19. Hwan Su Yoon, K. M. Müller, R. G. Sheath, F. D. Ott & D. Bhattacharya (2006). "Defining the major lineages of red algae (Rhodophyta)" (PDF). Journal of Phycology 42 (2): 482–492. doi:10.1111/j.1529-8817.2006.00210.x.
  20. Robert Edward Lee (2008). Phycology. Cambridge University Press. p. 107. ISBN 978-0-521-68277-0. Retrieved 31 January 2011.
  21. Matsuzaki et al. (April 2004). "(April 8, 2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature 428 (6983): 653–7. doi:10.1038/nature02398. PMID 15071595.
  22. Nozaki et al. (July 10, 2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol. 2007; 5: 28. doi:10.1186/1741-7007-5-28
  23. Schönknecht et al. "(March 8, 2013) Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote". Science 339 (6124): 1207–1210. doi:10.1126/science.1231707.
  24. Nakamura et al. "(March 11, 2013) The First Symbiont-Free Genome Sequence of Marine Red Alga, Susabi-nori (Pyropia yezoensis)". PLoS ONE 8 (3): e57122. doi:10.1371/journal.pone.0057122.
  25. Collen et al. (March 15, 2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. PNAS doi:10.1073/pnas.1221259110
  26. Bhattacharya et al. (June 17, 2013) Genome of the red alga Porphyridium purpureum. Nature communications 4:1941. doi:10.1038/ncomms2931
  27. Summarised in Cavalier-Smith, Thomas (April 2000). "Membrane heredity and early chloroplast evolution". Trends in Plant Science 5 (4): 174–182. doi:10.1016/S1360-1385(00)01598-3. PMID 10740299.
  28. 28.0 28.1 Maberly, S. C.; Raven, J. A.; Johnston, A. M. (1992). "Discrimination between 12C and 13C by marine plants". Oecologia 91 (4): 481. doi:10.1007/BF00650320. JSTOR 4220100.
  29. 29.0 29.1 29.2 Fritsch, F. E. (1945), The structure and reproduction of the algae, Cambridge: Cambridge Univ. Press, ISBN 0521050421, OCLC 223742770
  30. 30.0 30.1 30.2 Kohlmeyer, J. (1975). "New Clues to the Possible Origin of Ascomycetes". BioScience (American Institute of Biological Sciences) 25 (2): 86–93. doi:10.2307/1297108. JSTOR 1297108.
  31. "Dulse: Palmaria palmata". Quality Sea Veg. Retrieved 2007-06-28.
  32. T. F. Mumford & A. Muira (1988). "Porphyra as food: cultivation and economics". In C. A. Lembi & J. Waaland. Algae and Human Affairs. Cambridge University Press, Cambridge. ISBN 0-521-32115-8.

External links