Radical SAM

Radical_SAM
Identifiers
Symbol Radical_SAM
Pfam PF04055
InterPro IPR007197
SCOP 102114
SUPERFAMILY 102114

Radical SAM is a designation for group of enzymatic reactions sharing the property that an iron-sulfur cluster in the enzyme cleaves S-Adenosyl methionine (SAM) reductively to produce a radical, usually a 5′-deoxyadenosyl radical, as a critical intermediate.[1] The radical intermediate allows enzymes to perform a wide variety of unusual chemical transformations. Examples of radical SAM enzymes include various enzymes of cofactor biosynthesis, enzyme activation, peptide modification, metalloprotein cluster formation, tRNA modification, lipid metabolism, etc. The vast majority of known radical SAM enzymes belong to the radical SAM superfamily,[2][3] and have a cysteine-rich motif that matches or resembles CxxxCxxC.

Examples of radical SAM enzymes found within the radical SAM superfamily include:

In addition, several non-canonical radical SAM enzymes have been described. These cannot be recognized by the Pfam hidden Markov model PF04055, but still use three Cys residues as ligands to a 4Fe4S cluster and produce a radical from S-adenosylmethionine. These include

  1. Booker, SJ; Grove, TL (2010). "Mechanistic and functional versatility of radical SAM enzymes". F1000 biology reports 2: 52. doi:10.3410/B2-52. PMC 2996862. PMID 21152342.
  2. Sofia, HJ; Chen, G; Hetzler, BG; Reyes-Spindola, JF; Miller, NE (2001). "Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods". Nucleic Acids Research 29 (5): 1097–106. doi:10.1093/nar/29.5.1097. PMC 29726. PMID 11222759.
  3. Frey, PA; Hegeman, AD; Ruzicka, FJ (2008). "The Radical SAM Superfamily". Critical reviews in biochemistry and molecular biology 43 (1): 63–88. doi:10.1080/10409230701829169. PMID 18307109.
  4. Zhang, Q; Li, Y; Chen, D; Yu, Y; Duan, L; Shen, B; Liu, W (2011). "Radical-mediated enzymatic carbon chain fragmentation-recombination". Nature chemical biology 7 (3): 154–60. doi:10.1038/nchembio.512. PMC 3079562. PMID 21240261.
  5. Chatterjee, A; Li, Y; Zhang, Y; Grove, TL; Lee, M; Krebs, C; Booker, SJ; Begley, TP; Ealick, SE (2008). "Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily". Nature chemical biology 4 (12): 758–65. doi:10.1038/nchembio.121. PMC 2587053. PMID 18953358.
  6. Zhang, Y; Zhu, X; Torelli, AT; Lee, M; Dzikovski, B; Koralewski, RM; Wang, E; Freed, J et al. (2010). "Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme". Nature 465 (7300): 891–6. doi:10.1038/nature09138. PMC 3006227. PMID 20559380.
  7. Kamat, SS; Williams, HJ; Raushel, FM (2011). "Intermediates in the transformation of phosphonates to phosphate by bacteria". Nature 480 (7378): 570–3. doi:10.1038/nature10622. PMC 3245791. PMID 22089136.

External links