Qutrit
A qutrit is a unit of quantum information that exists as a superposition of three orthogonal quantum states.
The qutrit is analogous to the classical trit, just as the qubit, a quantum particle of two possible states, is analogous to the classical bit.
Representation
A qutrit has three orthogonal basis states, or vectors, often denoted , , and in Dirac or bra–ket notation. These are used to describe the qutrit as a superposition in the form of a linear combination of the three states:
- ,
where the coefficients are probability amplitudes, such that the sum of their squares is unity:
The qutrit's basis states are orthogonal. Qubits achieve this by utilizing Hilbert space , corresponding to spin-up and spin-down. Qutrits require a Hilbert space of higher dimension, namely .
A string of n qutrits represents 3n different states simultaneously.
Qutrits have several peculiar features when used for storing quantum information. For example, they are more robust to decoherence under certain environmental interactions.[1] In reality, manipulating qutrits directly might be tricky, and one way to do that is by using an entanglement with a qubit.[2]
See also
- Mutually unbiased bases
- Quantum computing
- Ternary computing
References
- ↑ A. Melikidze, V. V. Dobrovitski, H. A. De Raedt, M. I. Katsnelson, and B. N. Harmon, Parity effects in spin decoherence, Phys. Rev. B 70, 014435 (2004) (link)
- ↑ B. P. Lanyon,1 T. J. Weinhold, N. K. Langford, J. L. O'Brien, K. J. Resch, A. Gilchrist, and A. G. White, Manipulating Biphotonic Qutrits, Phys. Rev. Lett. 100, 060504 (2008) (link)
External links
- Physicists Demonstrate Qubit-Qutrit Entanglement by Lisa Zyga at Physorg.com, February 26, 2008 . Accessed March 2008
- qudit—Wiktionary.
|