Quot scheme

In algebraic geometry, the Quot scheme is a scheme parametrizing locally free sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme \operatorname{Quot}_F(X) whose set of T-points \operatorname{Quot}_F(X)(T) = \operatorname{Mor}_S(T, \operatorname{Quot}_F(X)) is the set of isomorphism classes of the quotients of F \times_S T that are flat over T. The notion was introduced by Alexander Grothendieck.

It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme. (In fact, taking F to be the structure sheaf \mathcal{O}_X gives a Hilbert scheme.)

References