Proximity ligation assay
Proximity ligation assay (in situ PLA) is a technology that extends the capabilities of traditional immunoassays to include direct detection of proteins, protein interactions and modifications with high specificity and sensitivity. Protein targets can be readily detected and localized with single molecule resolution and objectively quantified in unmodified cells and tissues. Utilizing only a few cells, sub-cellular events, even transient or weak interactions, are revealed in situ and sub-populations of cells can be differentiated. Within hours, results from conventional co-immunoprecipitation and co-localization techniques can be confirmed.
The PLA principle
Two primary antibodies raised in different species recognize the target antigen or antigens of interest. Species-specific secondary antibodies, called PLA probes, each with a unique short DNA strand attached to it, bind to the primary antibodies. When the PLA probes are in close proximity, the DNA strands can interact through a subsequent addition of two other circle-forming DNA oligonucleotides.
After joining of the two added oligonucleotides by enzymatic ligation, they are amplified via rolling circle amplification using a polymerase. After the amplification reaction, several-hundredfold replication of the DNA circle has occurred, and labeled complementary oligonucleotide probes highlight the product. The resulting high concentration of fluorescence in each single-molecule amplification product is easily visible as a distinct bright spot when viewed with a fluorescence microscope.
References
- Söderberg, Ola; Gullberg, Mats; Jarvius, Malin; Ridderstråle, Karin; Leuchowius, Karl-Johan; Jarvius, Jonas; Wester, Kenneth; Hydbring, Per et al. (2006). "Direct observation of individual endogenous protein complexes in situ by proximity ligation". Nature Methods 3 (12): 995–1000. doi:10.1038/nmeth947. PMID 17072308.
- Jarvius, M.; Paulsson, J.; Weibrecht, I.; Leuchowius, K.-J.; Andersson, A.-C.; Wahlby, C.; Gullberg, M.; Botling, J. et al. (2007). "In Situ Detection of Phosphorylated Platelet-derived Growth Factor Receptor Using a Generalized Proximity Ligation Method". Molecular & Cellular Proteomics 6 (9): 1500–9. doi:10.1074/mcp.M700166-MCP200. PMID 17565975.