Power residue symbol

In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higher[1] reciprocity laws.[2]

Background and notation

Let k be an algebraic number field with ring of integers   \mathcal{O}_k  that contains a primitive n-th root of unity   \zeta_n\in\mathcal{O}_k.

Let   \mathfrak{p} \subset \mathcal{O}_k   be a prime ideal and assume that n and \mathfrak{p} are coprime (i.e. n \not \in \mathfrak{p}.)

The norm of  \mathfrak{p}   is defined as the cardinality of the residue class ring    \mathcal{O}_k / \mathfrak{p}\;:\;\;\; \mathrm{N} \mathfrak{p} = |\mathcal{O}_k / \mathfrak{p}|.   (since \mathfrak{p} is prime this is a finite field)

There is an analogue of Fermat's theorem in   \mathcal{O}_k:  If   \alpha \in \mathcal{O}_k,\;\;\; \alpha\not\in \mathfrak{p},   then

\alpha^{\mathrm{N} \mathfrak{p} -1}\equiv 1 \pmod{\mathfrak{p} }.

And finally,   \mathrm{N} \mathfrak{p} \equiv 1 \pmod{n}.   These facts imply that

\alpha^{\frac{\mathrm{N} \mathfrak{p} -1}{n}}\equiv \zeta_n^s\pmod{\mathfrak{p} }
  is well-defined and congruent to a unique n-th root of unity ζns.

Definition

This root of unity is called the n-th power residue symbol for   \mathcal{O}_k,   and is denoted by


\left(\frac{\alpha}{\mathfrak{p} }\right)_n= \zeta_n^s \equiv \alpha^{\frac{\mathrm{N} \mathfrak{p} -1}{n}}\pmod{\mathfrak{p}}.

Properties

The n-th power symbol has properties completely analogous to those of the classical (quadratic) Legendre symbol:


\left(\frac{\alpha}{\mathfrak{p} }\right)_n
=
\begin{cases}
0 &\mbox{ if } \alpha\in\mathfrak{p}\\
1 &\mbox{ if }\alpha\not\in\mathfrak{p}\mbox{ and there is an } \eta \in\mathcal{O}_k\mbox{ such that }\alpha\equiv\eta^n\pmod{\mathfrak{p}}\\
\zeta \mbox{ where }\zeta^n=1\mbox{ and }\zeta \neq 1&\mbox{ if }\alpha\not\in\mathfrak{p}\mbox{ and there is no such }\eta
\end{cases}

In all cases (zero and nonzero)


\left(\frac{\alpha}{\mathfrak{p} }\right)_n \equiv \alpha^{\frac{\mathrm{N} \mathfrak{p} -1}{n}}\pmod{\mathfrak{p}}.

\left(\frac{\alpha}{\mathfrak{p} }\right)_n 
\left(\frac{\beta}{\mathfrak{p} }\right)_n 
=
\left(\frac{\alpha\beta}{\mathfrak{p} }\right)_n

\mbox{if }\alpha \equiv\beta\pmod{\mathfrak{p}}
\mbox{ then }
\left(\frac{\alpha}{\mathfrak{p} }\right)_n 
=
\left(\frac{\beta}{\mathfrak{p} }\right)_n

Relation to the Hilbert symbol

The n-th power residue symbol is related to the Hilbert symbol (\cdot,\cdot)_{\mathfrak{p}} for the prime \mathfrak{p} by

\left(\frac{\alpha}{\mathfrak{p} }\right)_n = \left({\pi, \alpha}\right)_{\mathfrak{p}}

in the case \mathfrak{p} coprime to n, where \pi is any uniformising element for the local field K_{\mathfrak{p}}.[3]

Generalizations

The n-th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.

Any ideal \mathfrak{a}\subset\mathcal{O}_k is the product of prime ideals, and in one way only:

\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2 \dots\mathfrak{p}_g.

The n-th power symbol is extended multiplicatively:


\bigg(\frac{\alpha}{\mathfrak{a} }\bigg)_n 
=
\left(\frac{\alpha}{\mathfrak{p}_1 }\right)_n 
\left(\frac{\alpha}{\mathfrak{p}_2 }\right)_n 
\dots
\left(\frac{\alpha}{\mathfrak{p}_g }\right)_n.

If \beta\in\mathcal{O}_k is not zero the symbol \left(\frac{\alpha}{\beta}\right)_n is defined as


\left(\frac{\alpha}{\beta}\right)_n = \left(\frac{\alpha}{(\beta) }\right)_n,
where (\beta) is the principal ideal generated by \beta.

The properties of this symbol are analogous to those of the quadratic Jacobi symbol:


\mbox{If }\alpha\equiv\beta\pmod{\mathfrak{a}}
\mbox{ then }
\bigg(\frac{\alpha}{\mathfrak{a} }\bigg)_n =
\left(\frac{\beta}{\mathfrak{a} }\right)_n.

\bigg(\frac{\alpha}{\mathfrak{a} }\bigg)_n 
\left(\frac{\beta}{\mathfrak{a} }\right)_n 
=
\left(\frac{\alpha\beta}{\mathfrak{a} }\right)_n.

\left(\frac{\alpha}{\mathfrak{a} }\right)_n 
\left(\frac{\alpha}{\mathfrak{b} }\right)_n 
=
\left(\frac{\alpha}{\mathfrak{ab} }\right)_n.

\mbox{If } \alpha\equiv\eta^n\pmod{\mathfrak{a}}\mbox{ then }
\left(\frac{\alpha}{\mathfrak{a} }\right)_n =1.

\mbox{If } \left(\frac{\alpha}{\mathfrak{a} }\right)_n \neq1
\mbox{ then }\alpha \mbox{ is not an }n\mbox{-th power}\pmod{\mathfrak{a}}.

\mbox{If } \left(\frac{\alpha}{\mathfrak{a} }\right)_n =1
\mbox{ then }\alpha \mbox{ may or may not be an }n\mbox{-th power}\pmod{\mathfrak{a}}.

Power reciprocity law

The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols as[4]

\left({\frac{\alpha}{\beta}}\right)_n \left({\frac{\beta}{\alpha}}\right)_n^{-1} = \prod_{\mathfrak{p} | n\infty} (\alpha,\beta)_{\mathfrak{p}} \ .

See also

Notes

  1. Quadratic reciprocity deals with squares; higher refers to cubes, fourth, and higher powers.
  2. All the facts in this article are in Lemmermeyer Ch. 4.1 and Ireland & Rosen Ch. 14.2
  3. Neukirch (1999) p. 336
  4. Neukirch (1999) p. 415

References