Polyadic space

In mathematics, a polyadic space is a topological space that is the image under a continuous function of a topological power of an Alexandroff one-point compactification of a discrete topological space.

History

Polyadic spaces were first studied by S. Mrówka in 1970 as a generalisation of dyadic spaces.[1] The theory was developed further by R. H. Marty, János Gerlits and Murray G. Bell,[2] the latter of whom introduced the concept of the more general centred spaces.[1]

Background

A subset K of a topological space X is said to be compact if every open cover of K contains a finite subcover. It is said to be locally compact at a point xX if x lies in the interior of some compact subset of X. X is a locally compact space if it is locally compact at every point in the space.[3]

A proper subset AX is said to be dense if the closure Ā = X. A space whose set has a countable, dense subset is called a separable space.

For a non-compact, locally compact Hausdorff topological space (X, \tau_X), we define the Alexandroff one-point compactification as the topological space with the set \left \{ \omega \right \} \cup X, denoted \omega X, where \omega \notin X, with the topology \tau_{\omega X} defined as follows:[4][2]

Definition

Let X be a discrete topological space, and let \omega X be an Alexandroff one-point compactification of X. A Hausdorff space P is polyadic if for some cardinal number \lambda, there exists a continuous surjective function f : \omega X^\lambda \rightarrow P, where \omega X^\lambda is the product space obtained by multiplying \omega X with itself \lambda times.[5]

Examples

Take the set of natural numbers \mathbb{Z}+ with the discrete topology. Its Alexandroff one-point compactification is \omega \mathbb{Z}+. Choose \lambda = 1 and define the homeomorphism h : \omega \mathbb{Z} + \rightarrow \left [ 0,1 \right ] with the mapping


h(x) =
\begin{cases}
1/x, & \text{if }x\in\mathbb{Z}+ \\
0, & \text{if }x=\omega
\end{cases}

It follows from the definition that the space \left \{0 \right \} \cup \bigcup_{n \in \mathbb{N}} \left \{ 1/n \right \} is polyadic and compact directly from the definition of compactness, without using Heine-Borel.

Every dyadic space (a compact space which is a continuous image of a Cantor set[6]) is a polyadic space.[7]

Let X be a separable, compact space. If X is a metrizable space, then it is polyadic (the converse is also true).[2]

Properties

The cellularity c(X) of a space X is \sup \left \{ \vert B \vert : B \text{ is a disjoint collection of open sets of } X \right \}. The tightness t(X) of a space X is defined as follows: let A \subset X, and p \in \bar{A}. We define a(p, A) := \min \left \{ \vert  B \vert : p \in \bar{B}, B \subset A \right \}, and define t(p, X) := \sup \left \{ a (p, A) : A \subset X, p \in \bar{A} \right \}. Then t(X) := \sup \left \{ t(p, X) : p \in X \right \}.[8] The topological weight w(X) of a polyadic space X satisfies the equality w(X) = c(X) \cdot t(X).[9]

Let X be a polyadic space, and let A \subset X. Then there exists a polyadic space P \subset X such that A \subset P and c(P) \le c(A).[9]

Polyadic spaces are the smallest class of topological spaces that contain metric compact spaces and are closed under products and continuous images.[10] Every polyadic space X of weight \leq 2^\omega is a continuous image of \mathbb{Z} +.[10]

A topological space X has the Suslin property if there is no uncountable family of pairwise disjoint non-empty open subsets of X.[11] Suppose that X has the Suslin property and X is polyadic. Then X is diadic.[12]

Let dis(X) be the least number of discrete sets needed to cover X, and let \Delta (X) denote the least cardinality of a non-empty open set in X. If X is a polyadic space, then dis(X) \ge \Delta (X).[9]

Ramsey's theorem

There is an analogue of Ramsey's theorem from combinatorics for polyadic spaces. For this, we describe the relationship between Boolean spaces and polyadic spaces. Let CO(X) denote the clopen algebra of all clopen subsets of X. We define a Boolean space as a compact Hausdorff space whose basis is CO(X). The element G \in CO(X)' such that \langle\langle G \rangle\rangle = CO(X) is called the generating set for CO(X). We say G is a (\tau, \kappa) -disjoint collection if G is the union of at most \tau subcollections G_\alpha, where for each \alpha, G_\alpha is a disjoint collection of cardinality at most \kappa It was proven by Petr Simon that X is a Boolean space with the generating set G of CO(X) being (\tau, \kappa) -disjoint if and only if X is homeomorphic to a closed subspace of \alpha \kappa ^ \tau.[8] The Ramsey-like property for polyadic spaces as stated by Murray Bell for Boolean spaces is then as follows: every uncountable clopen collection contains an uncountable subcollection which is either linked or disjoint.[13]

Compactness

We define the compactness number of a space X, denoted by \operatorname{cmpn}\,X, to be the least number n such that X has an n-ary closed subbase. We can construct polyadic spaces with arbitrary compactness number. We will demonstrate this using two theorems proven by Murray Bell in 1985. Let \mathcal{S} be a collection of sets and let S be a set. We denote the set \{\bigcap \mathcal{F} : \mathcal{F} \text{ is a finite subset of } \mathcal{S}\} by \mathcal{S}^{\widehat{\mathcal{F}}}; all subsets of S of size n by [S]^n; and all subsets of size at most n by [S]^{<=n}. If 2 \le n < \omega and \bigcap \mathcal{F} \ne \empty for all \mathcal{F} \in [\mathcal{S}]^n, then we say that \mathcal{S} is n-linked. If every n-linked subset of \mathcal{S} has a non-empty intersection, then we say that \mathcal{S} is n-ary. Note that if \mathcal{S} is n-ary, then so is \mathcal{S}^{\widehat{\mathcal{F}}}, and therefore every space X with \operatorname{cmpn}\,X \le n has a closed, n-ary subbase \mathcal{S} with \mathcal{S} = \mathcal{S}^{\widehat{\mathcal{F}}}. Note that a collection \mathcal{S} = \mathcal{S}^{\widehat{\mathcal{F}}} of closed subsets of a compact space X is a closed subbase if and only if for every closed K in an open set U, there exists a finite \mathcal{F} such that \mathcal{F} \subset \mathcal{S} and K \subset \bigcup \mathcal{F} \subset U.[14]

Let S be an infinite set and let n by a number such that 1\le n < \omega. We define the product topology on [S]^{\le n} as follows: for s \in S, let s^- = \{F \in [S]^{\le n} : s \in F\}, and let s^+ = \{F \in [S]^{\le n} : s \notin F\}. Let \mathcal{S} be the collection \mathcal{S} = \bigcup_{s \in S} \{s^+, s^-\}. We take \mathcal{S} as a clopen subbase for our topology on [S]^{\le n}. This topology is compact and Hausdorff. For k and n such that 0 \le k \le n, we have that [S]^k is a discrete subspace of [S]^{\le n}, and hence that [S]^{\le n} is a union of n+1 discrete subspaces.[14]

Theorem (Upper bound on \operatorname{cmpn}\, [S]^{\le n}): For each total order < on S, there is an n+1-ary closed subbase \mathcal{R} of [S]^{\le 2n}.

Proof: For s \in S, define L_s = \{ F \in s^+ : | \{ t \in F : t < s \} | \le n - 1 \} and R_s = \{ F \in s^+ : | \{ t \in F : t > s \} | \le n - 1 \}. Set \mathcal{R} = \bigcup_{ s \in S} \{ L_s, R_s, s^+ \}. For A, B and C such that A \cup B \cup C \ne \empty, let \mathcal{F} = \{ L_s : s \in A \} \cup \{ R_s : s \in B \} \cup \{ s^- : s \in C \} such that \mathcal{F} is an n+1-linked subset of \mathcal{R}. Show that A \cup B \in \bigcap \mathcal{F}. \blacksquare

For a topological space X and a subspace A \in X, we say that a continuous function r : X \rightarrow A is a retraction if r|_A is the identity map on A. We say that A is a retract of X. If there exists an open set U such that A \subset U \subset X, and A is a retract of U, then we say that A is a neighbourhood retract of X.

Theorem (Lower bound on \operatorname{cmpn}\, [S]^{\le n}) Let n be such that 2 \le n < \omega. Then [\omega_1]^{\le 2n-1} cannot be embedded as a neighbourhood retract in any space K with \operatorname{cmpn}\,K \le n.

From the two theorems above, it can be deduced that for n such that 1 \le n < \omega, we have that \operatorname{cmpn}\,[\omega_1]^{\le 2n-1} = n + 1 = \operatorname{cmpn}\,[\omega_1]^{\le 2n}.

Let A be the Alexandroff one-point compactification of the discrete space S, so that A = S \cup \{\infty\}. We define the continuous surjection g : A^n \rightarrow [S]^{\le n} by g((x_1, ..., x_n)) = \{x_1, \ldots , x_n\} \cap S. It follows that [S]^{\le n} is a polyadic space. Hence [\omega_1]^{\le 2n-1} is a polyadic space with compactness number \operatorname{cmpn}\, [\omega_1]^{\le 2n-1} = n+1.[14]

Generalisations

Centred spaces, AD-compact spaces[15] and ξ-adic spaces[16] are generalisations of polyadic spaces.

Centred space

Let \mathcal{S} be a collection of sets. We say that \mathcal{S} is centred if \bigcap \mathcal{F} \ne \empty for all finite subsets \mathcal{F} \subseteq \mathcal{S}.[17] Define the Boolean space Cen( \mathcal{S} ) = \{ \chi_T : T \text{ is a centred subcollection of } \mathcal{S} \}, with the subspace topology from 2^{\mathcal{S}}. We say that a space X is a centred space if there exists a collection \mathcal{S} such that X is a continuous image of Cen(\mathcal{S}).[18]

Centred spaces were introduced by Murray Bell in 2004.

AD-compact space

Let X be a non-empty set, and consider a family of its subsets \mathcal{A} \subseteq \mathcal{P} (X). We say that \mathcal{A} is an adequate family if:

We may treat \mathcal{A} as a topological space by considering it a subset of the Cantor cube D^X, and in this case, we denote it K(\mathcal{A}).

Let K be a compact space. If there exist a set X and an adequate family \mathcal{A} \subseteq \mathcal{P} (X), such that K is the continuous image of K(\mathcal{A}), then we say that K is an AD-compact space.

AD-compact spaces were introduced by Grzegorz Plebanek. He proved that they are closed under arbitrary products and Alexandroff compactifications of disjoint unions. It follows that every polyadic space is hence an AD-compact space. The converse is not true, as there are AD-compact spaces that are not polyadic.[15]

ξ-adic space

Let \kappa and \tau be cardinals, and let X be a Hausdorff space. If there exists a continuous surjection from (\kappa + 1)^\tau to X, then X is said to be a ξ-adic space.[16]

ξ-adic spaces were proposed by S. Mrówka, and the following results about them were given by János Gerlits (they also apply to polyadic spaces, as they are a special case of ξ-adic spaces).[19]

Let \mathfrak{n} be an infinite cardinal, and let X be a topological space. We say that X has the property \mathbf{B} ( \mathfrak{n} ) if for any family \{ G_\alpha : \alpha \in A \} of non-empty open subsets of X, where | A | = \mathfrak{n}, we can find a set B \subset A and a point p \in X such that |B| = \mathfrak{n} and for each neighbourhood N of p, we have that | \{ \beta \in B : N \cap G_\beta = \empty \} | < \mathfrak{n}.

If X is a ξ-adic space, then X has the property \mathbf{B} ( \mathfrak{n} ) for each infinite cardinal \mathfrak{n}. It follows from this result that no infinite ξ-adic Hausdorff space can be an extremally disconnected space.[19]

Hyadic space

Hyadic spaces were introduced by Eric van Douwen.[20] They are defined as follows.

Let X be a Hausdorff space. We denote by H(X) the hyperspace of X. We define the subspace J_2 (X) of H(X) by \{ F \in H(X) : |F| \le 2 \}. A base of H(X) is the family of all sets of the form \langle U_0, \dots , U_n \rangle = \{ F \in H(X) : F \subseteq U_0 \cup \dots \cup U_n, F \cap U_i \ne \empty \text{ for } 0 \le i \le n \}, where n is any integer, and U_i are open in X. If X is compact, then we say a Hausdorff space Y is hyadic if there exists a continuous surjection from H(X) to Y.[21]

Polyadic spaces are hyadic.[22]

See also

References

  1. 1.0 1.1 Hart, Klaas Pieter; Nagata, Jun-iti; Vaughan, Jerry E. (2003). "Dyadic compacta". Encyclopedia of General Topology. Elsevier Science. p. 193. ISBN 978-0444503558.
  2. 2.0 2.1 2.2 Al-Mahrouqi, Sharifa (2013). Compact topological spaces inspired by combinatorial constructions (Thesis). University of East Anglia. pp. 8–13.
  3. Møller, Jesper M. (2014). "Topological spaces and continuous maps". General Topology. p. 58. ISBN 9781502795878.
  4. Tkachuk, Vladimir V. (2011). "Basic Notions of Topology and Function Spaces". A Cp-Theory Problem Book: Topological and Function Spaces. Springer Science+Business Media. p. 35. ISBN 9781441974426.
  5. Turzański, Marian (1996). Cantor Cubes: Chain Conditions. Wydawnictwo Uniwersytetu Śląskiego. p. 19. ISBN 978-8322607312.
  6. Nagata, Jun-Iti. "Topics related to mappings". Modern General Topology. p. 298. ISBN 978-0444876553.
  7. Dikranjan, Dikran; Salce, Luigi (1998). Abelian Groups, Module Theory, and Topology. CRC Press. p. 339. ISBN 9780824719371.
  8. 8.0 8.1 Bell, Murray (2005). "Tightness in Polyadic Spaces" (PDF). Topology Proceedings (Auburn University) 25: 2–74.
  9. 9.0 9.1 9.2 Spadaro, Santi (2009-05-22). "A note on discrete sets". arXiv:abs/0905.3588 Check |arxiv= value (help). Unsupported parameter(s) in cite arXiv (help)
  10. 10.0 10.1 Koszmider, Piotr (2012). "Universal Objects and Associations Between Classes of Banach Spaces and Classes of Compact Spaces". arXiv:abs/1209.4294 Check |arxiv= value (help). Unsupported parameter(s) in cite arXiv (help)
  11. "Topology Comprehensive Exam" (PDF). Ohio University. 2005. Archived from the original (PDF) on 2014-02-14. Retrieved 2015-02-14.
  12. Turzański, Marian (1989). "On generalizations of dyadic spaces". Acta Universitatis Carolinae. Mathematica et Physica 30 (2): 154. ISSN 0001-7140.
  13. Bell, Murray (1996-01-11). "A Ramsey Theorem for Polyadic Spaces". University of Tennessee at Martin. Retrieved 2015-02-14.
  14. 14.0 14.1 14.2 Bell, Murray (1985). "Polyadic spaces of arbitrary compactness numbers". Commentationes Mathematicae Universitatis Carolinae (Charles University in Prague) 26 (2): 353–361. Retrieved 2015-02-27.
  15. 15.0 15.1 Plebanek, Grzegorz (1995-08-25). "Compact spaces that result from adequate families of sets". Topology and its Applications (Elsevier) 65 (3): 257–270.
  16. 16.0 16.1 Bell, Murray (1998). "On character and chain conditions in images of products" (PDF). Fundamenta Mathematicae (Polish Academy of Sciences) 158 (1): 41–49.
  17. Bell, Murray. "Generalized dyadic spaces" (PDF). pp. 47–58. Archived (PDF) from the original on 2011-06-08. Retrieved 2014-02-27.
  18. Bell, Murray (2004). "Function spaces on τ-Corson compacta and tightness of polyadic spaces". Czechoslovak Mathematical Journal 54 (4): 899–914.
  19. 19.0 19.1 Gerlits, János (1971). Novák, Josef, ed. "On m-adic spaces". General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Third Prague Topological Symposium (Prague: Academia Publishing House of the Czechoslovak Academy of Science): 147–148.
  20. Bell, Murray (1988). "Gₖ subspaces of hyadic spaces" (PDF). Proceedings of the American Mathematical Society (American Mathematical Society) 104 (2): 635.
  21. van Douwen, Eric K. (1990). "Mappings from hyperspaces and convergent sequences". Topology and its Applications (Elsevier) 34 (1): 35–45.
  22. Banakh, Taras (2003). "On cardinal invariants and metrizability of topological inverse Clifford semigroups". Topology and its Applications (Elsevier) 128 (1): 38.