Pollination

Carpenter bee with pollen collected from Night-blooming cereus
Tip of a tulip stamen covered with pollen grains.

Pollination is the process by which pollen is transferred from the anther (male part) to the stigma (female part) of the plant, thereby enabling fertilization and reproduction. This takes place in the angiosperms, the flower bearing plants.

In spite of a common perception that pollen grains are gametes, like the sperm cells of animals; pollination is an event in the alternation of generations. Each pollen grain is a male haploid gametophyte, adapted to being transported to the female gametophyte, where it can effect fertilization by producing the male gamete (or gametes), in the process of double fertilization).

A successful angiosperm pollen grain (gametophyte) containing the male gametes is transported to the stigma, where it germinates and its pollen tube grows down the style to the ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. One nucleus fuses with the polar bodies to produce the endosperm tissues, and the other with the ovule to produce the embryo[1][2] Hence the term: "double fertilization".

In gymnosperms, the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ, such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of gymnosperms in question.

The receptive part of the carpel is called a stigma in the flowers of angiosperms. The receptive part of the gymnosperm ovule is called the micropyle. Pollination is a necessary step in the reproduction of flowering plants, resulting in the production of offspring that are genetically diverse.

The study of pollination brings together many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and pollen vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilization: the result of pollination. The study of pollination by insects is known as anthecology.

Types

Abiotic

Abiotic pollination by wind, depicted in Praesidium Sponsaliorum Plantarum by Carl Linnaeus, 1729.

Abiotic pollination refers to situations where pollination is mediated without the involvement of other organisms. Only 10% of flowering plants are pollinated without animal assistance. The most common form of abiotic pollination, anemophily, is pollination by wind. This form of pollination is early dominant in grasses, most conifers, and many deciduous trees. Hydrophily is pollination by water, and occurs in aquatic plants which release their pollen directly into the surrounding water. About 80% of all plant pollination is biotic. In gymnosperms, biotic pollination is generally incidental when it occurs, though some gymnosperms and their pollinators are mutually adapted for pollination. The best-known examples probably are members of the order Cycadales and associated species of beetles. Most conifera are anemophilous; they depend on wind pollination. Of the abiotically pollinated species, 98% are anemophilous and 2% hydrophilous, being pollinated by water.

Biotic

A hummingbird feeding
Main article: Pollinator

More commonly, the process of pollination requires pollinators: organisms that carry or move the pollen grains from the anther to the receptive part of the carpel or pistil(stigma). This is biotic pollination. The various flower traits (and combinations thereof) that differentially attract one type of pollinator or another are known as pollination syndromes. Roughly 200,000 varieties of animal pollinators are in the wild, most of which are insects.

Entomophily, pollination by insects, often occurs on plants that have developed colored petals and a strong scent to attract insects such as, bees, wasps and occasionally ants (Hymenoptera), beetles (Coleoptera), moths and butterflies (Lepidoptera), and flies (Diptera). The existence of insect pollination dates back to the dinosaur era.

In zoophily, pollination is performed by vertebrates such as birds and bats, particularly, hummingbirds, sunbirds, spiderhunters, honeyeaters, and fruit bats. Plants adapted to using bats or moths as pollinators typically have white petals and a strong scent, whereas plants that use birds as pollinators tend to develop red petals and rarely develop a scent (few birds rely on a sense of smell to find plant-based food).

Insect pollinators such as honeybees (Apis mellifera),[3] bumblebees (Bombus terrestris),[4][5] and butterflies (Thymelicus flavus)[6] have been observed to engage in flower constancy, which means they are more likely to transfer pollen to other conspecific plants.[7][8] This can be beneficial for the pollinators, as flower constancy prevents the loss of pollen during interspecific flights and pollinators from clogging stigmas with pollen of other flower species. It also improves the probability that the pollinator will find productive flowers easily accessible and recognisable by familiar clues.[9]

Mechanism

A European honey bee collects nectar, while pollen collects on its body.
Honey Bees Immersed in Yellow Beavertail Cactus Flower Pollen

Pollination can be accomplished by cross-pollination or by self-pollination:

Geranium incanum, like most geraniums and pelargoniums, sheds its anthers, sometimes its stamens as well, as a barrier to self-pollination. This young flower is about to open its anthers, but has not yet fully developed its pistil.
These Geranium incanum flowers have opened their anthers, but not yet their stigmas. Note the change of colour that signals to pollinators that it is ready for visits.
This Geranium incanum flower has shed its stamens, and deployed the tips of its pistil without accepting pollen from its own anthers. (It might of course still receive pollen from younger flowers on the same plant.)

An estimated 48.7% of plant species are either dioecious or self-incompatible obligate out-crossers.[13] It is also estimated that about 42% of flowering plants exhibit a mixed mating system in nature.[14] In the most common kind of mixed mating system, individual plants produce a single type of flower and fruits may contain self-pollinated, out-crossed or a mixture of progeny types.

Pollination also requires consideration of pollenizers. The terms "pollinator" and "pollenizer" are often confused: a pollinator is the agent that moves the pollen, whether it be bees, flies, bats, moths, or birds; a pollenizer is the plant that serves as the pollen source for other plants. Some plants are self-compatible (self-fertile) and can pollinate and fertilize themselves. Other plants have chemical or physical barriers to self-pollination.

In agriculture and horticulture pollination management, a good pollenizer is a plant that provides compatible, viable and plentiful pollen and blooms at the same time as the plant that is to be pollinated or has pollen that can be stored and used when needed to pollinate the desired flowers. Hybridization is effective pollination between flowers of different species, or between different breeding lines or populations. see also Heterosis.

Peaches are considered self-fertile because a commercial crop can be produced without cross-pollination, though cross-pollination usually gives a better crop. Apples are considered self-incompatible, because a commercial crop must be cross-pollinated. Many commercial fruit tree varieties are grafted clones, genetically identical. An orchard block of apples of one variety is genetically a single plant. Many growers now consider this a mistake. One means of correcting this mistake is to graft a limb of an appropriate pollenizer (generally a variety of crabapple) every six trees or so.

The wasp Mischocyttarus rotundicollis transporting pollen grains of Schinus terebinthifolius

Pollen vectors

Biotic pollen vectors are animals, usually insects, but also reptiles, birds, mammals, and sundry others, that routinely transport pollen and play a role in pollination. This is usually as a result of their activities when visiting plants for feeding, breeding or shelter. The pollen adheres to the vector's body parts such as face, legs, mouthparts, hair, feathers, and moist spots; depending on the particular vector. Such transport is vital to the pollination of many plant species.

Any kind of animal that often visits or encounters flowers is likely to be a pollen vector to some extent. For example, a crab spider that stops at one flower for a time and then moves on, might carry pollen incidentally, but most pollen vectors of significant interest are those that routinely visit the flowers for some functional activity. They might feed on pollen, or plant organs, or on plant secretions such as nectar, and carry out acts of pollination on the way. Many plants bear flowers that favour certain types of pollinator over all others. This need not always be an effective strategy, because some flowers that are of such a shape that they favour pollinators that pass by their anthers and stigmata on the way to the nectar, may get robbed by ants that are small enough to bypass the normal channels, or by short-tongued bees that bite through the bases of deep corolla tubes to extract nectar at the end opposite to the anthers and stigma. Some flowers have specialized mechanisms to trap pollinators to increase effectiveness. However, in general, plants that rely on pollen vectors tend to be adapted to their particular type of vector, for example day-pollinated species tend to be brightly coloured, but if they are pollinated largely by birds or specialist mammals, they tend to be larger and have larger nectar rewards than species that are strictly insect-pollinated. They also tend to spread their rewards over longer periods, having long flowering seasons; their specialist pollinators would be likely to starve if the pollination season were too short.[15]

As for the types of pollinators, reptile pollinators are known, but they form a minority in most ecological situations. They are most frequent and most ecologically significant in island systems, where insect and sometimes also bird populations may be unstable and less species-rich. Adaptation to a lack of animal food and of predation pressure, might therefore favour reptiles becoming more herbivorous and more inclined to feed on pollen and nectar.[16] Most species of lizards in the families that seem to be significant in pollination seem to carry pollen only incidentally, especially the larger species such as Varanidae and Iguanidae, but especially several species of the Gekkonidae are active pollinators, and so is at least one species of the Lacertidae, Podarcis lilfordi, which pollinates various species, but in particular is the major pollinator of Euphorbia dendroides on various Mediterranean islands.[17]

Mammals are not generally thought of as pollinators, but some rodents, bats and marsupials are significant pollinators and some even specialise in such activities. In South Africa certain species of Protea (in particular Protea humiflora, P. amplexicaulis, P. subulifolia, P. decurrens and P. cordata) are adapted to pollination by rodents (particularly Cape Spiny Mouse, Acomys subspinosus)[18] and elephant shrews (Elephantulus species).[19] The flowers are borne near the ground, are yeasty smelling, not colourful, and sunbirds reject the nectar with its high xylose content. The mice apparently can digest the xylose and they eat large quantities of the pollen.[20] In Australia pollination by flying, gliding and earthbound mammals has been demonstrated.[21]

Examples of pollen vectors include many species of wasps, that transport pollen of many plant species, being potential or even efficient pollinators.[22]

Evolution of plant/pollinator interactions

Main article: Pollination syndrome

The first fossil record for abiotic pollination is from fern-like plants in the late Carboniferous period. Gymnosperms show evidence for biotic pollination as early as the Triassic period. Many fossilized pollen grains show characteristics similar to the biotically dispersed pollen today. Furthermore, the gut contents, wing structures, and mouthpart morphologies of fossilized beetles and flies suggest that they acted as early pollinators. The association between beetles and angiosperms during the early Cretaceous period led to parallel radiations of angiosperms and insects into the late Cretaceous. The evolution of nectaries in late Cretaceous flowers signals the beginning of the mutualism between hymenopterans and angiosperms.

In agriculture

An Andrena bee collects pollen among the stamens of a rose. The female carpel structure appears rough and globular to the left. The bee's stash of pollen is on its hind leg.
Blueberries being pollinated by bumblebees. Bumblebee hives need to be bought each year as the queens must hibernate (unlike honey bees). They are used nonetheless as they offer advantages with certain fruits as blueberries (such as the fact that they are active even at colder outdoor ambient temperature).
Well-pollinated blackberry blossom begins to develop fruit. Each incipient drupelet has its own stigma and good pollination requires the delivery of many grains of pollen to the flower so that all drupelets develop.

Pollination management is a branch of agriculture that seeks to protect and enhance present pollinators and often involves the culture and addition of pollinators in monoculture situations, such as commercial fruit orchards. The largest managed pollination event in the world is in Californian almond orchards, where nearly half (about one million hives) of the US honey bees are trucked to the almond orchards each spring. New York's apple crop requires about 30,000 hives; Maine's blueberry crop uses about 50,000 hives each year.

Bees are also brought to commercial plantings of cucumbers, squash, melons, strawberries, and many other crops. Honey bees are not the only managed pollinators: a few other species of bees are also raised as pollinators. The alfalfa leafcutter bee is an important pollinator for alfalfa seed in western United States and Canada. Bumblebees are increasingly raised and used extensively for greenhouse tomatoes and other crops.

The ecological and financial importance of natural pollination by insects to agricultural crops, improving their quality and quantity, becomes more and more appreciated and has given rise to new financial opportunities. The vicinity of a forest or wild grasslands with native pollinators near agricultural crops, such as apples, almonds or coffee can improve their yield by about 20%. The benefits of native pollinators may result in forest owners demanding payment for their contribution in the improved crop results – a simple example of the economic value of ecological services.

The American Institute of Biological Sciences reports that native insect pollination saves the United States agricultural economy nearly an estimated $3.1 billion annually through natural crop production;[23] pollination produces some $40 billion worth of products annually in the United States alone.[24]

Pollination of food crops has become an environmental issue, due to two trends. The trend to monoculture means that greater concentrations of pollinators are needed at bloom time than ever before, yet the area is forage poor or even deadly to bees for the rest of the season. The other trend is the decline of pollinator populations, due to pesticide misuse and overuse, new diseases and parasites of bees, clearcut logging, decline of beekeeping, suburban development, removal of hedges and other habitat from farms, and public concern about bees. Widespread aerial spraying for mosquitoes due to West Nile fears is causing an acceleration of the loss of pollinators.

The US solution to the pollinator shortage, so far, has been for commercial beekeepers to become pollination contractors and to migrate. Just as the combine harvesters follow the wheat harvest from Texas to Manitoba, beekeepers follow the bloom from south to north, to provide pollination for many different crops.

Environmental impacts

Loss of pollinators, also known as Pollinator decline (of which colony collapse disorder is perhaps the most well known) has been noticed in recent years.[25] Observed losses would have significant economic impacts. Possible explanations for pollinator decline include habitat destruction, pesticide, parasitism/diseases, climate change and others, and many researchers believe it is the synergistic effects of these factors which are ultimately detrimental to pollinator populations.

The structure of plant-pollinator networks

Wild pollinators often visit a large number of plant species and plants are visited by a large number of pollinator species. All these relations together form a network of interactions between plants and pollinators. Surprising similarities were found in the structure of networks consisting out of the interactions between plants and pollinators. This structure was found to be similar in very different ecosystems on different continents, consisting of entirely different species.[26]

The structure of plant-pollinator networks may have large consequences for the way in which pollinator communities respond to increasingly harsh conditions. Mathematical models, examining the consequences of this network structure for the stability of pollinator communities suggest that the specific way in which plant-pollinator networks are organized minimizes competition between pollinators[27] and may even lead to strong indirect facilitation between pollinators when conditions are harsh.[28] This makes that pollinator species together can survive under harsh conditions. But it also means that pollinator species collapse simultaneously when conditions pass a critical point. This simultaneous collapse occurs, because pollinator species depend on each other when surviving under difficult conditions.[28]

Such a community-wide collapse, involving many pollinator species, can occur suddenly when increasingly harsh conditions pass a critical point and recovery from such a collapse might not be easy. The improvement in conditions needed for pollinators to recover, could be substantially larger than the improvement needed to return to conditions at which the pollinator community collapsed.[28]

Improving pollination with suboptimal bee densities

In some instances growers’ demand for beehives far exceeds the available supply. The number of managed beehives in the US has steadily declined from close to 6 million after WWII, to less than 2.5 million today. In contrast, the area dedicated to growing bee-pollinated crops has grown over 300% in the same time period. Additionally, in the past five years there has been a decline in winter managed beehives, which has reached an unprecedented rate of colony losses at near 30%.[29][30][31][32] At present, there is an enormous demand for beehive rentals that cannot always be met. There is a clear need across the agricultural industry for a management tool to draw pollinators into cultivations and encourage them to preferentially visit and pollinate the flowering crop. By attracting pollinators like honeybees and increasing their foraging behavior, particularly in the center of large plots, we can increase grower returns and optimize yield from their plantings. ISCA Technologies,[33] from Riverside California, created a semiochemical formulation called SPLAT Bloom, that modifies the behavior of honeybees, inciting them to visit flowers in every portion of the field.

See also

References

  1. Fritsch, Felix Eugene; Salisbury, Edward James (1920). "An introduction to the structure and reproduction of plants". G. Bell.
  2. Mauseth, James D. Botany: An Introduction to Plant Biology. Publisher: Jones & Bartlett, 2008 ISBN 978-0-7637-5345-0
  3. Hill, P.S.M., P.H. Wells, and H. Wells. 1997. Spontaneous flower constancy and learning in honey bees as a function of colour. Animal Behavior, 54: 615-627.
  4. Stout, J.C.; Allen, J.A.; Goulson, D. (1998). "The influence of relative plant density and floral morphological complexity on the behaviour of bumblebees". Oecologia 117: 543–550. doi:10.1007/s004420050691.
  5. Chittka, L.; Gumbert, A.; Kunze, J. (1997). "Foraging dynamics of bumble bees: correlates of movement within and between plant species". Behavioral Ecology 8 (3): 239–249. doi:10.1093/beheco/8.3.239.
  6. Goulson, D.; Ollerton, J.; Sluman, C. (1997). "Foraging strategies in the small skipper butterfly, Thymelicus flavus: when to switch?". Animal Behavior 53: 1009–1016. doi:10.1006/anbe.1996.0390.
  7. Harder, L. D., N.M. Williams, C.Y. Jordan, and W.A. Nelson. "The effects of Floral design and display on pollinator economics and pollen dispersal". 297-317.
  8. Editors, L. Chittka and J.D. Thomson. Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution. 2001. Cambridge University Press.
  9. Chittka, L.; Thomson, J.D.; Waser, N.M. (1999). "Flower constancy, insect psychology, and plant evolution". Naturwissenschaften 86: 361–177. doi:10.1007/s001140050636.
  10. Cronk, J. K.; Fennessy, M. Siobhan (2001). Wetland plants: biology and ecology. Boca Raton, Fla.: Lewis Publishers. p. 166. ISBN 1-56670-372-7.
  11. Glover, Beverly J. (2007). Understanding flowers and flowering: an integrated approach. Oxford University Press. p. 127. ISBN 0-19-856596-8.
  12. Culley, Theresa M.; Klooster, Matthew R. (January 2007). "The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms". The Botanical Review 73: 1–30. doi:10.1663/0006-8101(2007)73[1:TCBSAR]2.0.CO;2.
  13. Igic B, Kohn JR (May 2006). "The distribution of plant mating systems: study bias against obligately outcrossing species". Evolution 60 (5): 1098–103. doi:10.1554/05-383.1. PMID 16817548.
  14. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36: 47-79. doi:10.1146/annurev.ecolsys.36.091704. 175539
  15. Potts, Brad, Gore Peter. Reproductive Biology and Controlled Pollination of Eucalyptus. School of Plant Science, University of Tasmania 1995
  16. Olesen, Jens M. & Valido, Alfredo. Lizards as pollinators and seed dispersers: an island phenomenon. TRENDS in Ecology and Evolution Vol.18 No.4 April 2003
  17. GODÍNEZ-ÁLVAREZ HÉCTOR Pollination and seed dispersal by lizards. Revista Chilena de Historia Natural 77: 569-577, 2004
  18. Wiens, Delbert; Rourke, John P.; Casper, Brenda B.; Rickart, Eric A.; LaPine, T.R.; Peterson,J.; Channing, A: Nonflying Mammal Pollination of Southern African Proteas. Annals of the Missouri Botanical Garden Vol 70, number 1, 1983
  19. P.A. Fleming & S.W. Nicolson. Arthropod fauna of mammal-pollinated Protea humiflora: ants as an attractant for insectivore pollinators? African Entomology 11(1): 9–14 (2003)
  20. http://protea.worldonline.co.za/p52prhumi.htm
  21. Goldingay, R. L.; Carthew, S. M.; Whelan, R. J. (May 1991). "The Importance of Non-Flying Mammals in Pollination". Oikos. 61, No. 1. Wiley-Blackwell. pp. 79–87.
  22. Sühs, R.B.; Somavilla, A.; Putzke, J.; Köhle, A. (2009). "Pollen vector wasps (Hymenoptera, Vespidae) of Schinus terebinthifolius Raddi (Anacardiaceae)". Brazilian Journal of Biosciences. 7, n. 2,. Santa Cruz do Sul, RS, Brazil. pp. 138–143.
  23. BioScience, April 2006, Vol. 56 No. 4, pp. 315-317
  24. "US Forest Department: Pollinator Factsheet" (PDF). Retrieved 2014-04-18.
  25. "What is the male, pollen-producing part of a plant called?". CNN. 2000-05-05. Retrieved 2010-05-22.
  26. Bascompte, J.; Jordano, P.; Melián, C. J.; Olesen, J. M. (2003). "The nested assembly of plant–animal mutualistic networks". Proceedings of the National Academy of Sciences 100 (16): 9383–9387. doi:10.1073/pnas.1633576100.
  27. Bastolla, U.; Fortuna, M. A.; Pascual-García, A.; Ferrera, A.; Luque, B.; Bascompte, J. (2009). "The architecture of mutualistic networks minimizes competition and increases biodiversity". Nature 458 (7241): 1018–1020. doi:10.1038/nature07950.
  28. 28.0 28.1 28.2 Lever, J. J.; Nes, E. H.; Scheffer, M.; Bascompte, J. (2014). "The sudden collapse of pollinator communities". Ecology Letters 17 (3): 350–359. doi:10.1111/ele.12236.
  29. Biesmeijer, JC; Roberts, SPM; Reemer, M; Ohlemuller, R; Edwards, M; Peeters, T et al. (2006). ", Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands". Science 313: 351–354. doi:10.1126/science.1127863.
  30. Cox-Foster, DL; Conlan, S; Holmes, EC; Palacios, G; Evans, JD; Moran, NA et al. (2007). ", A metagenomic survey of microbes in honey bee colony collapse disorder". Science 318: 283–287. doi:10.1126/science.1146498. PMID 17823314.
  31. Woteki, Catherine (August 16, 2013). "The road to pollinator health". Science 341 (6147): 695. doi:10.1126/science.1244271.
  32. "EFSA Press Release: EFSA identifies risks to bees from neonicotinoids". Efsa.europa.eu. Retrieved 2014-04-18.
  33. "ISCA Technologies: A Leader of Innovative Pest Management Tools and Solutions". Iscatech.com. Retrieved 2014-04-18.

Notes

  • Crepet WL, Friis EM, Nixon KC. 1991. Fossil evidence for the evolution of biotic pollination [and discussion]. Philosophical Transactions: Biological Sciences 333(1267) 187-195.
  • Dafni, Amots; Kevan, Peter G.; and Husband, Brian C. (2005). Practical Pollination Biology. Enviroquest, Ltd. ISBN 978-0-9680123-0-7.
  • Labandeira CC, Kvacek J, & Mostovski MB. 2007. Pollination drops, pollen and insect pollination of Mesozoic gymnosperms. Taxon 56(3) 663-695.
  • Sihag, R.C. 1997.Pollination Biology: Basic and Applied Principles. Rajendra Scientific Publishers,Hisar, 210p.

External links

Look up pollination in Wiktionary, the free dictionary.
Wikimedia Commons has media related to Pollination.