Plutonium hydride
Names | |
---|---|
IUPAC name
Plutonium dihydride (excess hydrogen) | |
Systematic IUPAC name
Plutonium(2+) hydride | |
Other names
Plutonium dihydride Plutonium(II) hydride | |
Identifiers | |
17336-52-6 | |
| |
Jmol-3D images | Image |
| |
Properties | |
Molecular formula |
H2Pu |
Molar mass | 246.08 g·mol−1 |
Appearance | Black, opaque crystals |
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
verify (what is: / ?) | |
Infobox references | |
Plutonium hydride is a non-stoichiometric chemical compound with the formula PuH2+x. It is one of two characterised hydrides of plutonium, the other is PuH3.[1] PuH2 is non-stoichiometric with a composition range of PuH2 – PuH2.7. Additionally metastable stoichiometries with an excess of hydrogen (PuH2.7 – PuH3) can be formed.[1] PuH2 has a cubic structure. It is readily formed from the elements at 1 atmosphere at 100–200 °C:[1] When the stoichiometry is close to PuH2 it has a silver appearance, but gets blacker as the hydrogen content increases, additionally the color change is associated with a reduction in conductivity.[2]
- Pu + H2 → PuH2
Studies of the reaction of plutonium metal with moist air at 200–350 °C showed the presence of cubic plutonium hydride on the surface along with Pu2O3, PuO2 and a higher oxide identified by X-ray diffraction and X-ray photoelectron spectroscopy as the mixed-valence phase PuIV3−xPuVIxO6+x.[3] Investigation of the reaction performed without heating suggests that the reaction of Pu metal and moist air the production of PuO2 and a higher oxide along with adsorbed hydrogen, which catalytically combines with O2 to form water.[4]
Plutonium dihydride on the surface of hydrided plutonium acts as a catalyst for the oxidation of the metal with consumption of both O2 and N2 from air.[5]
See also
References
- ↑ 1.0 1.1 1.2 Gerd Meyer, 1991, Synthesis of Lanthanide and Actinide Compounds Springer, ISBN 0-7923-1018-7.
- ↑ The Chemistry of the Actinide and Transactinide Elements, Lester R. Morss, Norman M. Edelstein, J. Fuger, Springer, 2010, ISBN 9789048131464
- ↑ J. L. Stakebake, D. T. Larson, J. M. Haschke: Characterization of the Plutonium-water Reaction II: Formation of a Binary Oxide containing Pu(VI), Journal of Alloys and Compounds, 202, 1–2, 1993, 251–263, doi:10.1016/0925-8388(93)90547-Z.
- ↑ J. M. Haschke, T. H. Allen, L. A. Morales: Surface and Corrosion Chemistry of Plutonium, Los Alamos Science, 2000, 252.
- ↑ John M. Haschke Thomas H. Allen: Plutonium Hydride, Sesquioxide and Monoxide Monohydride: Pyrophoricity and Catalysis of Plutonium Corrosion, Journal of Alloys and Compounds, 320, 1, 2001, 58–71, doi:10.1016/S0925-8388(01)00932-X.
|