Petrie polygon

Various visualizations of the icosahedron
perspective
Orthogonal

In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every (n-1) consecutive sides (but no n) belong to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a regular polyhedron is a skew polygon such that every two consecutive sides (but no three) belong to one of the faces.[1]

For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the projection interior to it. The plane in question is the Coxeter plane of the symmetry group of the polygon, and the number of sides, h, is Coxeter number of the Coxeter group. These polygons and projected graphs are useful in visualizing symmetric structure of the higher-dimensional regular polytopes.

History

The Petrie polygon for a cube is a skew hexagon passing through 6 of 8 vertices. The skew Petrie polygon can be seen as an regular planer polygon by a specific orthogonal projection.

John Flinders Petrie (1907-1972) was the only son of Egyptologist Sir W. M. Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability. In periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them.

He first realized the importance of the regular skew polygons which appear on the surface of regular polyhedra and higher polytopes. He was a lifelong friend of Coxeter, who named these polygons after him.

The idea of Petrie polygons was later extended to semiregular polytopes.

In 1972, a few months after his retirement, Petrie was killed by a car while attempting to cross a motorway near his home in Surrey.

The Petrie polygons of the regular polyhedra

The Petrie polygon of the regular polyhedron {p, q} has h sides, where

cos2(π/h) = cos2(π/p) + cos2(π/q).

The regular duals, {p,q} and {q,p}, are contained within the same projected Petrie polygon.

Petrie polygons for regular polyhedra (red polygons)
tetrahedroncubeoctahedrondodecahedronicosahedron
edge-centeredvertex-centeredface-centeredface-centeredvertex-centered
4 sides6 sides6 sides10 sides10 sides
V:(4,0)V:(6,2)V:(6,0)V:(10,10,0)V:(10,2)
The Petrie polygons are the exterior of these orthogonal projections. Blue show "front" edges, while black lines show back edges.

The concentric rings of vertices are counted starting from the outside working inwards with a notation: V:(a, b, ...), ending in zero if there are no central vertices.

Infinite regular skew polygons (apeirogon) can also be defined as petrie polygons of the regular tilings, having angles of 90, 120, and 60 degrees of their square, hexagon and triangular faces respectively.

Infinite regular skew polygons also exist as petrie polygons of the regular hyperbolic tilings, like the order-7 triangular tiling, {3,7}:

The Petrie polygon of regular polychora (4-polytopes)

The Petrie polygon for the regular polychora {p, q ,r} can also be determined.


{3,3,3}

5-cell
5 sides
V:(5,0)

{3,3,4}

16-cell
8 sides
V:(8,0)

{4,3,3}

tesseract
8 sides
V:(8,8,0)

{3,4,3}

24-cell
12 sides
V:(12,6,6,0)

{5,3,3}

120-cell
30 sides
V:((30,60)3,603,30,60,0)

{3,3,5}

600-cell
30 sides
V:(30,30,30,30,0)

The Petrie polygon projections of regular and uniform polytopes

The Petrie polygon projections are most useful for visualization of polytopes of dimension four and higher. This table represents Petrie polygon projections of 3 regular families (simplex, hypercube, orthoplex), and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8.

Table of irreducible polytope families
Family
n
n-simplex n-hypercube n-orthoplex n-demicube 1k2 2k1 k21 pentagonal polytope
Group An BCn
I2(p) Dn
E6 E7 E8 F4 G2
Hn
2

Triangle


Square



p-gon
(example: p=7)


Hexagon


Pentagon
3

Tetrahedron


Cube


Octahedron


Tetrahedron
 

Dodecahedron


Icosahedron
4

5-cell

Tesseract



16-cell

Demitesseract



24-cell


120-cell


600-cell
5

5-simplex


5-cube


5-orthoplex


5-demicube
   
6

6-simplex


6-cube


6-orthoplex


6-demicube


122


221
 
7

7-simplex


7-cube


7-orthoplex


7-demicube


132


231


321
 
8

8-simplex


8-cube


8-orthoplex


8-demicube


142


241


421
 
9

9-simplex


9-cube


9-orthoplex


9-demicube
 
10

10-simplex


10-cube


10-orthoplex


10-demicube
 

Petrie dual

A Petrie dual or Petrial of a regular polyhedron is a regular map whose vertices and edges correspond to the vertices and edges of the original polyhedron, and whose faces are the set of petrie polygons, and is expressed by a π superscript operator to a regular polytope. Each edge is shared by 2 petrie polygon faces.[2][3][4][5]

For example, a petrial tetrahedron, {3,3}π, has 4 vertices, 6 edges, and 3 petrie quadrilateral faces. With an Euler characteristic, χ, of 1, it is topologically identical to the hemi-cube, {4,3}/2.

The petrial cube, {4,3}π, has 8 vertices, 12 edges, and 4 petrie hexagons, colored red, green, blue and orange here. With an Euler characteristic of 0, it can also be seen in the four hexagonal faces of the toroidal hexagonal tiling {6,3}(2,0).

A petrial octahedron, {3,4}π, has 6 vertices, 12 edges, and 4 petrie hexagon faces. It has an Euler characteristic of -2, and has a mapping to the hyperbolic order-4 hexagonal tiling, as {6,4}3.

A petrial dodecahedron, {5,3}π, has 20 vertices, 30 edges, and 6 petrie decagonal faces, and Euler characteristic of -4, related to the hyperbolic tiling {10,3}5.

A petrial icosahedron, {3,6}π, has 12 vertices, 30 edges, and 6 petrie decagonal faces, and Euler characteristic of -12, related to the hyperbolic tiling {10,5}3.

Examples
Petrial tetrahedron
{3,3}π = {4,3}3 = {4,3}/2
Petrial cube
{4,3}π = {6,3}3 = {6,3}(2,0)
Petrial octahedron
{3,4}π = {6,4}3

{4,3}3 = {4,3}/2

{6,3}3 = {6,3}(2,0)

Notes

  1. Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 (Definition: paper 13, Discrete groups generated by reflections, 1933, p. 161)
  2. Abstract regular polytopes, 7B operations on regular polytopes, pp.192-200, Petrie operation, π
  3. http://www.weddslist.com/rmdb/pages/glossary.php#petrial
  4. https://www.fields.utoronto.ca/programs/scientific/11-12/discretegeom/gradcourses/Course_notes.pdf
  5. Coxeter–Petrie Complexes of Regular Maps

References

External links