Nonlinear expectation

In probability theory, a nonlinear expectation is a nonlinear generalization of the expectation. Nonlinear expectations are useful in utility theory as they more closely match human behavior than traditional expectations.

Definition

A functional \mathbb{E}: \mathcal{H} \to \mathbb{R} (where \mathcal{H} is a vector lattice on a probability space) is a nonlinear expectation if it satisfies:[1][2]

  1. Monotonicity: if X,Y \in \mathcal{H} such that X \geq Y then \mathbb{E}[X] \geq \mathbb{E}[Y]
  2. Preserving of constants: if c \in \mathbb{R} then \mathbb{E}[c] = c

Often other properties are also desirable, for instance convexity, subadditivity, positive homogeneity, and translative of constants.[1]

Examples

References

  1. 1.0 1.1 Shige Peng (2006). "G–Expectation, G–Brownian Motion and Related Stochastic Calculus of Itô Type" (pdf). Abel Symposia (Springer-Verlag) 2. Retrieved August 9, 2012.
  2. Peng, S. (2004). "Nonlinear Expectations, Nonlinear Evaluations and Risk Measures". Stochastic Methods in Finance (pdf). Lecture Notes in Mathematics 1856. pp. 165–138. doi:10.1007/978-3-540-44644-6_4. ISBN 978-3-540-22953-7. Retrieved August 9, 2012.