Negativity (quantum mechanics)

In quantum mechanics, negativity is a measure of quantum entanglement which is easy to compute. It is a measure deriving from the PPT criterion for separability.[1] It has shown to be an entanglement monotone [2][3] and hence a proper measure of entanglement.

Definition

The negativity of a subsystem A can be defined in terms of a density matrix \rho as:

\mathcal{N}(\rho) \equiv \frac{||\rho^{\Gamma_A}||_1-1}{2}

where:

An alternative and equivalent definition is the absolute sum of the negative eigenvalues of \rho^{\Gamma_A}:

 \mathcal{N}(\rho) = \sum_i \frac{|\lambda_{i}|-\lambda_{i}}{2}

where \lambda_i are all of the eigenvalues.

Properties

\mathcal{N}(\sum_{i}p_{i}\rho_{i}) \le \sum_{i}p_{i}\mathcal{N}(\rho_{i})
\mathcal{N}(P(\rho_{i})) \le \mathcal{N}(\rho_{i})

where P(\rho) is an arbitrary LOCC operation over \rho

Logarithmic negativity

The logarithmic negativity is an entanglement measure which is easily computable and an upper bound to the distillable entanglement.[4] It is defined as

E_N(\rho) \equiv \log_2 ||\rho^{\Gamma_A}||_1

where \Gamma_A is the partial transpose operation and || \cdot ||_1 denotes the trace norm.

It relates to the negativity as follows:[1]

E_N(\rho) := \log_2( 2 \mathcal{N} +1)

Properties

The logarithmic negativity

References

  1. 1.0 1.1 K. Zyczkowski, P. Horodecki, A. Sanpera, M. Lewenstein (1998). "Volume of the set of separable states". Phys. Rev. 883 A 58. arXiv:quant-ph/9804024. Bibcode:1998PhRvA..58..883Z. doi:10.1103/PhysRevA.58.883. Retrieved 24 January 2015.
  2. J. Eisert (2001). Entanglement in quantum information theory (Thesis). University of Potsdam.
  3. G. Vidal, R. F. Werner (2002). "A computable measure of entanglement". Phys. Rev. 032314 A 65. arXiv:quant-ph/0102117. Bibcode:2002PhRvA..65c2314V. doi:10.1103/PhysRevA.65.032314. Retrieved 24 March 2012.
  4. M. B. Plenio (2005). "The logarithmic negativity: A full entanglement monotone that is not convex". Phys. Rev. Lett. 090503 95. arXiv:quant-ph/0505071. Bibcode:2005PhRvL..95i0503P. doi:10.1103/PhysRevLett.95.090503. Retrieved 24 March 2012.