Morphism

In many fields of mathematics, morphism refers to a structure-preserving map from one mathematical structure to another. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on.

In category theory, morphism is a broadly similar idea, but somewhat more abstract: the mathematical objects involved need not be sets, and the relationship between them may be something more general than a map.

The study of morphisms and of the structures (called objects) over which they are defined, is central to category theory. Much of the terminology of morphisms, as well as the intuition underlying them, comes from concrete categories, where the objects are simply sets with some additional structure, and morphisms are structure-preserving functions. In category theory, morphisms are sometimes also called arrows.

Definition

A category C consists of two classes, one of objects and the other of morphisms.

There are two operations which are defined on every morphism, the domain (or source) and the codomain (or target).

If a morphism f has domain X and codomain Y, we write f : XY. Thus a morphism is represented by an arrow from its domain to its codomain. The collection of all morphisms from X to Y is denoted homC(X,Y) or simply hom(X, Y) and called the hom-set between X and Y. Some authors write MorC(X,Y), Mor(X, Y) or C(X, Y). Note that the term hom-set is a bit of a misnomer as the collection of morphisms is not required to be a set, a category where hom(X, Y) is a set for all objects X and Y is called locally small.

For every three objects X, Y, and Z, there exists a binary operation hom(X, Y) × hom(Y, Z) → hom(X, Z) called composition. The composite of f : X Y and g : Y Z is written gf or gf. The composition of morphisms is often represented by a commutative diagram. For example,

Morphisms satisfy two axioms:

When C is a concrete category, the identity morphism is just the identity function, and composition is just the ordinary composition of functions. Associativity then follows, because the composition of functions is associative.

Note that the domain and codomain are in fact part of the information determining a morphism. For example, in the category of sets, where morphisms are functions, two functions may be identical as sets of ordered pairs (may have the same range), while having different codomains. The two functions are distinct from the viewpoint of category theory. Thus many authors require that the hom-classes hom(X, Y) be disjoint. In practice, this is not a problem because if this disjointness does not hold, it can be assured by appending the domain and codomain to the morphisms, (say, as the second and third components of an ordered triple).

Some specific morphisms

Examples

For more examples, see the entry category theory.

See also

Notes

  1. 1.0 1.1 1.2 1.3 Jacobson (2009), p. 15.

References

External links