Malcev-admissible algebra
In algebra, a Malcev-admissible algebra, introduced by Myung (1983), is a (possibly non-associative) algebra that becomes a Malcev algebra under the bracket [a,b] = ab – ba. Examples include associative algebras, Lie-admissible algebras, and Okubo algebras.
See also
- Jordan-admissible algebra
References
- Albert, A. Adrian (1948), "Power-associative rings", Transactions of the American Mathematical Society 64: 552–593, ISSN 0002-9947, JSTOR 1990399, MR 0027750
- Hazewinkel, Michiel, ed. (2001), "Lie-admissible_algebra", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Myung, Hyo Chul (1980), "Flexible Malʹcev-admissible algebras", Hadronic J. 4 (6): 2033–2136, MR 0637500
- Myung, Hyo Chul (1986), Malcev-admissible algebras, Progress in Mathematics 64, Boston, MA: Birkhäuser Boston, Inc., ISBN 0-8176-3345-6, MR 0885089