mTORC2

mTOR
Identifiers
Symbol MTOR
Alt. symbols FRAP, FRAP2, FRAP1
Entrez 2475
HUGO 3942
OMIM 601231
RefSeq NM_004958
UniProt P42345
Other data
EC number 2.7.11.1
Locus Chr. 1 p36
RICTOR
Identifiers
Symbol RICTOR
Entrez 253260
HUGO 28611
RefSeq NM_152756
Other data
Locus Chr. 5 p13.1
MLST8
Identifiers
Symbol MLST8
Entrez 64223
HUGO 24825
OMIM 612190
RefSeq NM_022372
UniProt Q9BVC4
Other data
Locus Chr. 16 p13.3
mitogen-activated protein kinase associated protein 1
Identifiers
Symbol MAPKAP1
Entrez 79109
HUGO 18752
OMIM 610558
RefSeq NM_001006617.1
UniProt Q9BPZ7
Other data
Locus Chr. 9 q34.11

mTOR Complex 2 (mTORC2) is a protein complex that regulates cellular metabolism as well as the cytoskeleton. It is defined by the interaction of mTOR and the rapamycin-insensitive companion of mTOR (RICTOR), and also includes GβL, mammalian stress-activated protein kinase interacting protein 1 (mSIN1), as well as Protor 1/2, DEPTOR, and TTI1 and TEL2.[1][2][3]

Function

mTORC2 has been shown to function as an important regulator of the cytoskeleton through its stimulation of F-actin stress fibers, paxillin, RhoA, Rac1, Cdc42, and protein kinase C α (PKCα).[2]

mTORC2 also regulates cellular metabolism, in part through the regulation of Akt/PKB and the serum-and glucocorticoid-induced protein kinase SGK. mTORC2 phosphorylates the serine/threonine protein kinase Akt/PKB at a serine residue S473 as well as serine residue S450. Phosphorylation of the serine stimulates Akt phosphorylation at a threonine T308 residue by PDK1 and leads to full Akt activation.[4][5] Curcumin inhibits both by preventing phosphorylation of the serine.[6] Moreover, mTORC2 activity has been implicated in the regulation of autophagy.[7][8]

Regulation

mTORC2 appears to be regulated by insulin, growth factors, serum, and nutrient levels.[1] Originally, mTORC2 was identified as a rapamycin-insensitive entity, as acute exposure to rapamycin did not affect mTORC2 activity or Akt phosphorylation.[4] However, subsequent studies have shown that, at least in some cell lines, chronic exposure to rapamycin, while not affecting pre-existing mTORC2s, promotes rapamycin inhibition of free mTOR molecules, thus inhibiting the formation of new mTORC2.[9] mTORC2 can be inhibited by chronic treatment with rapamycin in vivo, both in cancer cells and normal tissues such as the liver and adipose tissue.[10][11] Torin1 can also be used to inhibit mTORC2.[8][12]

Localization of mTORC2 in the cell has been suggested to be at the plasma membrane; however, this may be due to its association with Akt.[13]

mTORC2 activation has thought to be due to growth factors, given that it regulates the activity of Akt and PKC.[14]

mTORC2 may play a role in cancer, given its regulation of the widely studied oncogenetic Akt pathway.[10]

Rictor has been shown to be the scaffold protein for substrate binding to mTORC2.[15]

References

  1. 1.0 1.1 Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006). "mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s". Curr Biol 16 (18): 1865–70. doi:10.1016/j.cub.2006.08.001. PMID 16919458.
  2. 2.0 2.1 Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004). "Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton". Curr Biol 14 (14): 1296–302. doi:10.1016/j.cub.2004.06.054. PMID 15268862.
  3. Laplante M, Sabatini DM (Apr 13, 2012). "mTOR signaling in growth control and disease.". Cell 149 (2): 274–93. doi:10.1016/j.cell.2012.03.017. PMC 3331679. PMID 22500797.
  4. 4.0 4.1 Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005). "Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex". Science 307 (5712): 1098–101. doi:10.1126/science.1106148. PMID 15718470.
  5. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998). "Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B". Science 279 (5351): 710–4. doi:10.1126/science.279.5351.710. PMID 9445477.
  6. Beevers CS, Li F, Liu L, Huang S (2006). "Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells". Int J Cancer 119 (4): 757–64. doi:10.1002/ijc.21932. PMID 16550606.
  7. Yang, Z; Klionsky, DJ (Apr 2010). "Mammalian autophagy: core molecular machinery and signaling regulation.". Current opinion in cell biology 22 (2): 124–31. doi:10.1016/j.ceb.2009.11.014. PMC 2854249. PMID 20034776.
  8. 8.0 8.1 Datan E, Shirazian A, Benjamin S, Matassov D, Tinari A, Malorni W, Lockshin RA, Garcia-Sastre A, Zakeri Z (2014). "mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection". Virology. 452-453 (March 2014): 175–190. doi:10.1016/j.virol.2014.01.008. PMC 4005847. PMID 24606695.
  9. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006). "Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB". Mol Cell 22 (2): 159–68. doi:10.1016/j.molcel.2006.03.029. PMID 16603397.
  10. 10.0 10.1 Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM (February 2009). "mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice". Cancer Cell 15 (2): 148–59. doi:10.1016/j.ccr.2008.12.017. PMC 2701381. PMID 19185849.
  11. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (Mar 30, 2012). "Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity.". Science 335 (6076): 1638–43. doi:10.1126/science.1215135. PMC 3324089. PMID 22461615.
  12. Liu Q, Chang JW, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS (2010). "Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer". J. Med Chem 53 (19): 7146–7155. doi:10.1021/jm101144f. PMC 3893826. PMID 20860370.
  13. Zoncu R, Efeyan A, Sabatini DM (January 2011). "mTOR: from growth signal integration to cancer, diabetes and ageing". Nat. Rev. Mol. Cell Biol. 12 (1): 21–35. doi:10.1038/nrm3025. PMC 3390257. PMID 21157483.
  14. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (February 2005). "Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex". Science 307 (5712): 1098–101. doi:10.1126/science.1106148. PMID 15718470.
  15. Mendoza MC, Er EE, Blenis J (June 2011). "The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation". Trends Biochem. Sci. 36 (6): 320–8. doi:10.1016/j.tibs.2011.03.006. PMC 3112285. PMID 21531565.

External links