List of small groups

The following list in mathematics contains the finite groups of small order up to group isomorphism.

Counts

Total number of nonisomorphic groups by order[1]
Add0 12345678910 11121314151617181920212223
0 0111212152215121141515221
24 1522541415112114122141614221
48 522515115213221131242671415141
72 501234161521521151211211014221

Glossary

Each group is named by their Small Groups library index as Goi, where o is the order of the group, and i is the index of the group within that order.

Common group names:

The notations Zn and Dihn have the advantage that point groups in three dimensions Cn and Dn do not have the same notation. There are more isometry groups than these two, of the same abstract group type.

The notation G × H denotes the direct product of the two groups; Gn denotes the direct product of a group with itself n times. GH denotes a semidirect product where H acts on G; this may also depend on the choice of action of H on G

Abelian and simple groups are noted. (For groups of order n < 60, the simple groups are precisely the cyclic groups Zn, for prime n.) The equality sign ("=") denotes isomorphism.

The identity element in the cycle graphs is represented by the black circle. The lowest order for which the cycle graph does not uniquely represent a group is order 16.

In the lists of subgroups, the trivial group and the group itself are not listed. Where there are multiple isomorphic subgroups, their number is indicated in parentheses.

List of small abelian groups

The finite abelian groups are either cyclic groups, or direct products thereof; see abelian groups.

Number of nonisomorphic abelian groups by order[2]
Add0 12345678910 11121314151617181920212223
0 011121113211211151212111
24 321321117111411131112211
48 5221213131112112111112111
72 611221115511211131212111
List of all abelian groups up to order 30
Order Goi Group Subgroups Cycle
graph
Properties
1 [3] G11 Z1[4] = S1 = A2 Trivial group. Cyclic, alternating group, symmetric group. Elementary.
2 [5] G21 Z2[6] = S2 = Dih1 simple, the smallest non-trivial group. Symmetric group. Cyclic. Elementary.
3 [7] G31 Z3[8] = A3 simple. Alternating group. Cyclic. Elementary.
4[9] G41 Z4[10] = Dic1 Z2 cyclic.
G42 Z22 = K4[11] = Dih2 Z2 (3) Klein four-group, the smallest non-cyclic group. Elementary. Product.
5[12] G51 Z5[13] Simple. Cyclic. Elementary.
6[14] G62 Z6[15] = Z3 × Z2[16] Z3, Z2 Cyclic. Product.
7[17] G71 Z7[18] Simple. Cyclic. Elementary.
8[19] G81 Z8[20] Z4, Z2 Cyclic.
G82 Z4 × Z2[21] Z22, Z4 (2), Z2 (3) Product.
G85 Z23[22] Z22 (7), Z2 (7) The non-identity elements correspond to the points in the Fano plane, the Z2 × Z2 subgroups to the lines. Product. Elementary.
9[23] G91 Z9[24] Z3 Cyclic.
G92 Z32[25] Z3 (4) Elementary. Product.
10[26] G102 Z10[27] = Z5 × Z2 Z5, Z2 Cyclic. Product.
11 G111 Z11[28] Simple. Cyclic. Elementary.
12[29] G122 Z12[30] = Z4 × Z3 Z6, Z4, Z3, Z2 Cyclic. Product.
G125 Z6 × Z2[31] = Z3 × K4 Z6 (3), Z3, Z2 (3), Z22 Product.
13 G131 Z13[32] Simple. Cyclic. Elementary.
14[33] G142 Z14[34] = Z7 × Z2 Z7, Z2 Cyclic. Product.
15[35] G151 Z15[36] = Z5 × Z3 Z5, Z3 Cyclic. Product.
16[37] G161 Z16[38] Z8, Z4, Z2 Cyclic.
G162 Z42[39] Z2 (3), Z4 (6), Z22, Z4 × Z2 (3) Product.
G165 Z8 × Z2[40] Z2 (3), Z4 (2), Z22, Z8 (2), Z4 × Z2 Product.
G1610 Z4 × K4[41] Z2 (7), Z4 (4), Z22 (7), Z23, Z4 × Z2 (6) Product.
G1614 Z24[21] = K42 Z2 (15), Z22 (35), Z23 (15) Product. Elementary.
17 G171 Z17[42] Simple. Cyclic. Elementary.
18[43] G182 Z18[44] = Z9 × Z2 Z9, Z6, Z3, Z2 Cyclic. Product.
G185 Z6 × Z3[45] = Z32 × Z2 Z6, Z3, Z2 Product.
19 G191 Z19[46] Simple. Cyclic. Elementary.
20[47] G202 Z20[48] = Z5 × Z4 Z20, Z10, Z5, Z4, Z2 Cyclic. Product.
G205 Z10 × Z2[49] = Z5 × Z22 Z5, Z2 Product.
21 G212 Z21[50] = Z7 × Z3 Z7, Z3 Cyclic. Product.
22 G222 Z22[51] = Z11 × Z2 Z11, Z2 Cyclic. Product.
23 G231 Z23[52] Simple. Cyclic. Elementary.
24[53] G242 Z24[54] = Z8 × Z3 Z12, Z8, Z6, Z4, Z3, Z2 Cyclic. Product.
G249 Z12 × Z2[55] = Z6 × Z4
= Z4 × Z3 × Z2
Z12, Z6, Z4, Z3, Z2 Product.
G2415 Z6 × Z22[41] Z6, Z3, Z2 Product.
25 G251 Z25 Z5 Cyclic.
G252 Z52 Z5 Product. Elementary.
26 G261 Z26 = Z13 × Z2 Z13, Z2 Cyclic. Product.
27[56] G271 Z27 Z9, Z3 Cyclic.
G272 Z9×Z3 Z9, Z3 Product.
G27 Z33 Z3 Product. Elementary.
28 G282 Z28 = Z7 × Z4 Z14, Z7, Z4, Z2 Cyclic. Product.
G284 Z14 × Z2 = Z7 × Z22 Z14, Z7, Z4, Z2 Product.
29 G291 Z29 Simple. Cyclic. Elementary.
30[57] G304 Z30 = Z15 × Z2 = Z10 × Z3
= Z6 × Z5 = Z5 × Z3 × Z2
Z15, Z10, Z6, Z5, Z3, Z2 Cyclic. Product.

List of small non-abelian groups

Number of nonisomorphic nonabelian groups by order[58]
Add0 12345678910 11121314151617181920212223
0 000000102010301090303110
24 1201220304401010011110502010
48 470303012110110110122560303030
72 4401120504710101301090802110
List of all nonabelian groups up to order 30
Order Goi Group Subgroups Cycle
graph
Properties
6[14] G61 Dih3 = S3 Z3, Z2 (3) Dihedral group, the smallest non-abelian group, symmetric group, Frobenius group
8[19] G83 Dih4 Z4, Z22 (2), Z2 (5) Dihedral group. Extraspecial group. Nilpotent.
G84 Q8 = Dic2 = <2,2,2> Z4 (3), Z2 Quaternion group, Hamiltonian group. all subgroups are normal without the group being abelian. The smallest group G demonstrating that for a normal subgroup H the quotient group G/H need not be isomorphic to a subgroup of G. Extraspecial group Binary dihedral group. Nilpotent.
10[26] G101 Dih5 Z5, Z2 (5) Dihedral group, Frobenius group
12[29] G121 Q12 = Dic3 = <3,2,2>
= Z3 ⋊ Z4
Z2, Z3, Z4 (3), Z6 Binary dihedral group
G123 A4 Z22, Z3 (4), Z2 (3) Alternating group. No subgroup of order 6 although 6 divides its order. Frobenius group
G124 Dih6 = Dih3 × Z2 Z6, Dih3 (2), Z22 (3), Z3, Z2 (7) Dihedral group, product
14[33] G141 Dih7 Z7, Z2 (7) Dihedral group, Frobenius group
16[37][59] G163 G4,4 = K4 ⋊ Z4
(Z4×Z2) ⋊ Z2
Has the same number of elements of every order as the Pauli group. Nilpotent.
G164 Z4 ⋊ Z4 The squares of elements do not form a subgroup. Has the same number of elements of every order as Q8 × Z2. Nilpotent.
G166 Z8 ⋊ Z2 Sometimes called the modular group of order 16, though this is misleading as abelian groups and Q8 × Z2 are also modular. Nilpotent.
G167 Dih8 Z8, Dih4 (2), Z22 (4), Z4, Z2 (9) Dihedral group. Nilpotent.
G168 QD16 The order 16 quasidihedral group. Nilpotent.
G169 Q16 = Dic4 = <4,2,2> generalized quaternion group, binary dihedral group. Nilpotent.
G1611 Dih4 × Z2 Dih4 (2), Z4 × Z2, Z23 (2), Z22 (11), Z4 (2), Z2 (11) Product. Nilpotent.
G1612 Q8 × Z2 Hamiltonian, product. Nilpotent.
G1613 (Z4 × Z2) ⋊ Z2 The Pauli group generated by the Pauli matrices. Nilpotent.
18[43] G181 Dih9 Dihedral group, Frobenius group
G183 S3×Z3 Product
G184 (Z3 × Z3)⋊ Z2 Frobenius group
20[47] G201 Q20 = Dic5 = <5,2,2> Binary dihedral group
G203 Z5 ⋊ Z4 Frobenius group
G204 Dih10 = Dih5 × Z2 Dihedral group, product
21 G211 Z7 ⋊ Z3 Smallest non-abelian group of odd order. Frobenius group
22 G221 Dih11 Dihedral group, Frobenius group
24[53] G241 Z3 ⋊ Z8 Central extension of S3
G243 SL(2,3) = 2T = Q8 ⋊ Z3 Binary tetrahedral group
G244 Q24 = Dic6 = <6,2,2> = Z3 ⋊ Q8 Binary dihedral
G245 Z4 × S3 Product
G246 Dih12 Dihedral group
G247 Dic3 × Z2 = Z2 × (Z3 × Z4) Product
G248 (Z6 × Z2)⋊ Z2 = Z3 ⋊ Dih4 Double cover of dihedral group
G2410 Dih4 × Z3 Product. Nilpotent.
G2411 Q8 × Z3 Product. Nilpotent.
G2412 S4 Symmetric group. Has no normal Sylow subgroups.
G2413 A4 × Z2 Product
G2414 D12× Z2 Product
26 G261 Dih13 Dihedral group, Frobenius group
27[56] G273 Z32 ⋊ Z3 All non-trivial elements have order 3. Extraspecial group. Nilpotent.
G274 Z9 ⋊ Z3 Extraspecial group. Nilpotent.
28 G281 Z7 ⋊ Z4 Binary dihedral group
G283 Dih14 Dihedral group, product
30[57] G301 Z5 × S3 Product
G303 Dih15 Dihedral group, Frobenius group
G304 Z3 × Dih5 Product

Classifying groups of small order

Small groups of prime power order pn are given as follows:

Most groups of small order have a Sylow p subgroup P with a normal p-complement N for some prime p dividing the order, so can be classified in terms of the possible primes p, p-groups P, groups N, and actions of P on N. In some sense this reduces the classification of these groups to the classification of p-groups. Some of the small groups that do not have a normal p complement include:

Small groups library

The group theoretical computer algebra system GAP contains the "Small Groups library" which provides access to descriptions of small order groups. The groups are listed up to isomorphism. At present, the library contains the following groups:[60]

It contains explicit descriptions of the available groups in computer readable format.

See also

Notes

  1. A000001
  2. A000688
  3. Groups of order 1
  4. Z1
  5. Groups of order 2
  6. Z2
  7. Groups of order 3
  8. Z3
  9. Groups of order 4
  10. Z4
  11. Klein group
  12. Groups of order 5
  13. Z5
  14. 14.0 14.1 Groups of order 6
  15. Z6
  16. See a worked example showing the isomorphism Z6 = Z3 × Z2.
  17. Groups of order 7
  18. Z7
  19. 19.0 19.1 Groups of order 8
  20. Z8
  21. 21.0 21.1 Z4×Z2
  22. Elementary abelian group:E8
  23. Groups of order 9
  24. Z9
  25. Z3×Z3
  26. 26.0 26.1 Groups of order 10
  27. Z10
  28. Z11
  29. 29.0 29.1 Groups of order 12
  30. Z12
  31. Z6×Z2
  32. Z13
  33. 33.0 33.1 Groups of order 14
  34. Z14
  35. Groups of order 15
  36. Z15
  37. 37.0 37.1 Groups of order 16
  38. Z16
  39. Z4×Z4
  40. Z8×Z2
  41. 41.0 41.1 Z4×Z2×Z2
  42. Z17
  43. 43.0 43.1 Groups of order 18
  44. Z18
  45. Z6×Z3
  46. Z19
  47. 47.0 47.1 Groups of order 20
  48. Z20
  49. Z10×Z2
  50. Z21
  51. Z22
  52. Z23
  53. 53.0 53.1 Groups of order 24
  54. Z24
  55. Z12×Z2
  56. 56.0 56.1 Groups of order 27
  57. 57.0 57.1 Groups of order 30
  58. A060689
  59. Wild, Marcel. "The Groups of Order Sixteen Made Easy", American Mathematical Monthly, Jan 2005
  60. Hans Ulrich Besche The Small Groups library

References

External links