List of sequenced plastomes

A plastome is the genome of a plastid, a type of organelle found in plants and in a variety of protoctists. The number of known plastid genome sequences grew rapidly in the first decade of the 21st century. For example, 25 chloroplast genomes were sequenced for one molecular phylogenetic study.[1]

The flowering plants are especially well represented in complete chloroplast genomes. As of March, 2010, all of their orders are represented except Petrosaviales, Pandanales, Liliales, Commelinales, Picramniales, Huerteales, Escalloniales, Bruniales, and Paracryphiales.

Plants

Bryophytes s.l.

Sequenced Plastomes
Species variety Base Pairs Genes Reference Notes
Aneura mirabilis 108,007 [2][3] parasitic liverwort; plastome contains many pseudogenes
Anthoceros formosae 161,162 122 [4] hornwort; extensive RNA editing of plastome
Marchantia polymorpha 121,024 [5] liverwort
Physcomitrella patens 122,890 118 [6] moss
Tortula ruralis ~125,500 moss

Ferns and Lycophytes

Sequenced Plastomes
Species variety Base Pairs Genes Reference Family Notes
Adiantum capillus-veneris 150,568 [7] Pteridaceae
Alsophila spinulosa 156,661 117 [8] Cyatheaceae
Angiopteris evecta 153,901 [9] Marattiaceae
Equisetum arvense 133,309 Equisetaceae
Huperzia lucidula 154,373 [10] Lycopodiaceae
Isoetes flaccida 145,303 Isoetaceae
Psilotum nudum 138,829 117 [11] Psilotaceae
Selaginella moellendorffii Selaginellaceae
Selaginella uncinata 138,829 [12] Selaginellaceae

Gymnosperms

Sequenced Plastomes
Species variety Base Pairs Genes Reference Family Notes
Cryptomeria japonica 131,810 114 [13] Cupressaceae
Cycas micronesica [14] Cycadaceae
Cycas taitungensis 163,403 133 [15] Cycadaceae
Ephedra equisetina Ephedraceae
Gingko biloba 156,945 134 [16] Ginkgoaceae
Gnetum parvifolium Gnetaceae
Pinus koraiensis 116,866 Pinaceae
Pinus thunbergii 119,707 [17] Pinaceae
Podocarpus macrophyllus Podocarpaceae
Welwitschia mirabilis 119,726 101 [18] Welwitschiaceae

Flowering plants

Sequenced Plastomes
Species variety Base Pairs Genes Reference Family Notes
Acorus americanus [14] Acoraceae
Acorus calamus 153,821 Acoraceae
Aethionema cordifolium Brassicaceae
Aethionema grandiflorum Brassicaceae
Agrostis stolonifera 135,584 110 [19] Poaceae
Amborella trichopoda 162,686 [20] Amborellaceae
Anethum graveolens [14] Apiaceae
Antirrhinum majus [1] Plantaginaceae
Arabidopsis thaliana 154,478 [21] Brassicaceae
Arabis hirsuta Brassicaceae
Atropa belladonna 156,687 [22] Solanaceae
Aucuba japonica [1] Garryaceae
Bambusa oldhamii 139,350 Poaceae
Barbarea verna Brassicaceae
Berberidopsis corallina [1] Berberidopsidaceae
Brachypodium distachyon 135,199 110 [19] Poaceae
Brassica rapa Brassicaceae
Bulnesia arborea [1] Zygophyllaceae
Buxus microphylla [23] Buxaceae
Calycanthus floridus var. glaucus 153,337 [24] Calycanthaceae
Capsella bursa-pastoris Brassicaceae
Carica papaya Caricaceae
Ceratophyllum demersum [25] Ceratophyllaceae
Chloranthus spicatus [23] Chloranthaceae
Citrus sinensis var. 'Ridge Pineapple' 155,189 [26] Rutaceae
Coffea arabica [27] Rubiaceae
Coix lacryma-jobi [28] Poaceae
Cornus florida [1] Cornaceae
Crucihimalya wallichii Brassicaceae
Cucumis sativus 155,293 [29] Cucurbitaceae
Cuscuta exaltata [30] Convolvulaceae
Cuscuta gronovii [31] Convolvulaceae
Cuscuta obtusiflora Convolvulaceae
Cuscuta reflexa Convolvulaceae
Daucus carota 155,911 [32] Apiaceae
Dendrocalamus latiflorus 139,365 Poaceae
Dillenia indica [1] Dilleniaceae
Dioscores elephantipes [23] Dioscoreaceae
Draba nemorosa Brassicaceae
Drimys granadensis 160,604 [33] Winteraceae
Ehretia acuminata [1] Boraginaceae
Elaeis oleifera [14] Arecaceae
Epifagus virginiana 70,028 42 [34] Orobanchaceae
Eucalyptus globulus subsp. globulus 160,286 [35] Myrtaceae
Euonymus americanus [1] Celastraceae
Fagopyrum esculentum ssp. ancestrale 159,599 [36] Polygonaceae
Festuca arundinacea Poaceae
Ficus sp. [1] Moraceae
Glycine max 152,218 [37] Fabaceae
Gossypium barbadense 160,317 114 [38] Malvaceae
Gossypium hirsutum 160,301 [39] Malvaceae
Guizotia abyssinica Asteraceae
Gunnera manicata [1] Gunneraceae
Hedyosmum unpublished Chloranthaceae
Helianthus annuus 151,104 [40] Asteraceae
Heuchera sanguinea [1] Saxifragaceae
Hordeum vulgare subsp. vulgare 136,482 110 [19] Poaceae
Trithuria (syn. Hydatella) unpublished Hydatellaceae
Ilex cornuta [1] Aquifoliaceae
Illicium oligandrum [23] Schisandraceae (sensu APG III)
Ipomoea purpurea [30] Convolvulaceae
Jasminum nudiflorum 165,121 [41] Oleaceae
Lactuca sativa 152,765 [40] Asteraceae
Lemna minor 165,955 [42] Araliaceae
Lepidium virginicum Brassicaceae
Liquidambar styraciflua (syn. Altingia styraciflua) [1] Altingiaceae
Liriodendron tulipifera 159,866 [33][43] Magnoliaceae
Lobularia maritima Brassicaceae
Lolium perenne 135,282 110 [19] Poaceae
Lonicera japonica [1] Caprifoliaceae
Lotus corniculatus Fabaceae
Lotus japonicus 150,519 [44] Fabaceae
Manihot esculenta [45] Euphorbiaceae
Medicago truncatulata 124,033 Fabaceae
Megaleranthis saniculifolia 159,924 Ranunculaceae
Meliosma cuneifolia [1] Sabiaceae
Morus indica 156,599 [46] Moraceae
Musa acuminata [14] Musaceae
Nandina domestica [47] Berberidaceae
Nasturtium officinale Brassicaceae
Nelumbo nucifera [1] Nelumbonaceae
Nerium oleander Apocynaceae
Nicotiana sylvestris 155,941 Solanaceae
Nicotiana tabacum 155,943 [48] Solanaceae
Nicotiana tomentosiformis 155,745 Solanaceae
Nuphar advena 160,866 117 [49] Nymphaeaceae
Nymphaea alba 159,930 [50] Nymphaeaceae
Oenothera argillicola strain douthat 1 165,055 113 [51] Onagraceae
Oenothera biennis strain suaveolens Grado 164,807 113 [51] Onagraceae
Oenothera elata subsp. hookeri strain johansen 165,728 113 [51] Onagraceae
Oenothera glazioviana strain rr-lamarckiana Sweden 165,225 113 [51] Onagraceae
Oenothera parviflora strain atrovirens Standard 163,365 113 [51] Onagraceae
Olimarabidopsis pumila Brassicaceae
Oryza nivara 134,494 Poaceae
Oryza sativa indica 93-11 134,496 [52] Poaceae
Oryza sativa japonica Nipponbare 134,551 110[19] [53] Poaceae
Oryza sativa japonica PA64S 134,551 [52] Poaceae
Oxalis latifolia [1] Oxalidaceae
Panax ginseng 156,318 [54] Araliaceae
Passiflora biflora [14] Passifloraceae
Pelargonium Γ— hortorum [55] Geraniaceae
Phalaenopsis aphrodite subsp. formosana 148,964 [56] Orchidaceae
Phaseolus vulgaris 'Negro Jamapa' 150,285 [57] Fabaceae
Phoenix dactylifera Arecaceae
Phoradendron leucarpum [1] Viscaceae [58]
Piper cenocladum 160,624 [33] Piperaceae
Platanus occidentalis 161,791 [47] Platanaceae
Plumbago auriculata [1] Plumbaginaceae
Populus alba 156,505 [59] Salicaceae
Populus trichocarpa [60] Salicaceae
Quercus nigra [1] Fagaceae
Ranunculus macranthus 155,158 117 [49] Ranunculaceae
Rhizanthella gardneri 59,190 33 [61] Orchidaceae subterranean mycoheterotroph
Rhododendron simsii [1] Ericaceae
Saccharum SP-80-3280 141,182 Poaceae
Saccharum officinarum 141,182 110 [19] Poaceae
Scaevola aemula [14] Goodeniaceae
Solanum bulbocastanum 155,371 Solanaceae
Solanum lycopersicum 155,460 Solanaceae
Solanum tuberosum 155,298 [62] Solanaceae
Staphylea colchica [1] Staphyleaceae
Sorghum bicolor 140,754 110 [19] Poaceae
Spinacia oleracea 150,725 [63] Amaranthaceae
Trachelium caeruleum [64] Campanulaceae
Trifolium subterraneum 144,763 111 [65] Fabaceae
Triticum aestivum cv. Chinese Spring 134,545 110[19] [66][67] Poaceae
Trochodendron aralioides [1] Trochodendraceae
Typha latifolia 165,572 113 [19] Typhaceae
Vitis vinifera 160,928 [68] Vitaceae
Ximenia americana Ximeniaceae [58]
Yucca schidigera [16] Asparagaceae (sensu APG III)
Zea mays 140,384 110[19] [69] Poaceae

Green Algae

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Chaetosphaeridium globosum 131,183 124 [70]
Chara vulgaris
Chlamydomonas reinhardtii 203,395 99
Chlorella vulgaris 150,613 209 [71]
Chlorokybus atmophyticus 201,763 70 [72]
Dunaliella salina CCAP 19/18 269,044 102 [73]
Emiliania huxleyi 105,309 150
Helicosporidium 37,454 54 [74]
Leptosira terrestris 195,081 117 [75]
Mesostigma viride 42,424
Monomastix 114,528 94 [76]
Nephroselmis olivacea 200,799 127 [77]
Oedogonium cardiacum 196,547 103 [78]
Oltmannsiellopsis viridis 151,933 105 [79]
Ostreococcus tauri 71,666 86 [80]
Pseudendoclonium akinetum 195,867 105 [81]
Pycnococcus provasolii 80,211 98 [76]
Pyramimonas parkeae 101,605 110 [76]
Scenedesmus obliquus 161,452 96 [82]
Staurastrum punctulatum [83]
Stigeoclonium helveticum 223,902 97 [84]
Volvox carteri 420,650 91 [85]
Zygnema circumcarinatum

Red Algae

Sequenced Plastomes
Species variety Base Pairs Genes Reference Notes
Cyanidioschyzon merolae 149,987 243 [86]
Cyanidium caldarium RK1 [87]
Gracilaria tenuistipitata var. liui 183,883 238 [88]
Porphyra purpurea
Porphyra yezoensis

Glaucophytes

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Cyanophora paradoxa

Meta-algae and Apicomplexans

Meta-algae are organisms with photosynthetic organelles of secondary or tertiary endosymbiotic origin, and their close non-photosynthetic, plastid-bearing, relatives. Apicomplexans are a secondarily non-photosynthetic group of chromalveoates which retain a reduced plastid organelle.

photosynthetic Chromalveolates

Dinoflagellate plastid genomes are not organised into a single circular DNA molecule like other plastid genomes, but into an array of mini-circles.

Sequenced Plastomes
Species variety Base Pairs Genes Reference Notes
Chromera velia
Guillardia theta 121,524 167 [89]
Heterosigma akashiwo
Odontella sinensis 119.7kb 175
Phaeodactylum tricornutum
Thalassiosira pseudonana 129kb [90]
Rhodomonas salina

Chlorarachniophytes

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Bigelowiella natans 69,166 87 [91]

Euglenophytes

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Astasia longa 73.2kb 84
Euglena gracilis 143.2kb 128 [92]

Apicomplexans

Sequenced Plastomes
Species variety Base Pairs Genes Reference
Eimeria tenella Penn State 34.8kb 65 [93]
Plasmodium falciparum 34.7kb 68
Theileria parva Mugaga 39.6kb 71
Toxoplasma gondii RH 35.0kb 65

Nucleomorph Genomes

In some photosynthetic organisms that ability was acquired via symbiosis with a unicellular green alga (chlorophyte) or red alga (rhodophyte). In some such cases not only does the chloroplast of the former unicellular alga retain its own genome, but a remnant of the alga is also retained. When this retains a nucleus and a nuclear genome it is termed a nucleomorph.

Sequenced Nucleomorph Genomes
Species variety Base Pairs Genes Reference
Bigelowiella natans
Cryptomonas paramecium
Guillardia theta 551,264
Hemiselmis andersenii

Cyanelle Genomes

The unicellular eukaryote Paulinella chromatophora possesses an organelle (the cyanelle) which represents an independent case of the acquisition of photosynthesis by cyanobacterial endosymbiosis. (Note: the term cyanelle is also applied to the plastids of glaucophytes.)

Sequenced Cyanelle Genomes
Species variety Base Pairs Genes Reference
Paulinella chromatophora 1.02Mb 867 [94]

See also

References

  1. ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010). "Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots". Proc. Natl. Acad. Sci. U.S.A. 107 (10): 4623–8. doi:10.1073/pnas.0907801107. PMC 2842043. PMID 20176954.
  2. ↑ Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA et al. (February 2008). "Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis". Mol. Biol. Evol. 25 (2): 393–401. doi:10.1093/molbev/msm267. PMID 18056074.
  3. ↑ Plastid genome evolution of the non-photosynthetic liverwort Aneura mirabilis (Malmb.) Wickett & Goffinet (Aneuraceae)
  4. ↑ Masanori Kugita; Akira Kaneko, Yuhei Yamamoto, Yuko Takeya, Tohoru Matsumoto and Koichi Yoshinaga (1986). "The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants". Nucleic Acids Research 31 (2): 572–4. doi:10.1093/nar/gkg155.
  5. ↑ K Ohyama; Fukuzawa; H.; Kohchi; T.; Shirai; H.; Sano; T.; Chang, Zhen; Aota, Shin-Ichi; Inokuchi, Hachiro; Ozeki, Haruo (2003). "Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA". Nature 322 (6079): 716–721. doi:10.1038/322572a0.
  6. ↑ Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003). "Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus". Nucleic Acids Res. 31 (18): 5324–31. doi:10.1093/nar/gkg726. PMC 203311. PMID 12954768.
  7. ↑ Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003). "Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L". DNA Res. 10 (2): 59–65. doi:10.1093/dnares/10.2.59. PMID 12755170.
  8. ↑ Lei Gao, Xuan Yi, Yong-Xia Yang, Ying-Juan Su, and Ting Wang. 2009. "Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes". BMC Evolutionary Biology 9:130 (11 Jun 2009). doi:10.1186/1471-2148-9-130
  9. ↑ Roper, Jessie M.; Kellon Hansen, S.; Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Everett, Karin D. E.; Kuehl, Jennifer; Boore, Jeffrey L. (2007). "The Complete Plastid Genome Sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae)". American Fern Journal 97 (2): 95–106. doi:10.1640/0002-8444(2007)97[95:TCPGSO]2.0.CO;2.
  10. ↑ Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW et al. (2005). "The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae)". Gene 350 (2): 117–28. doi:10.1016/j.gene.2005.01.018. PMID 15788152.
  11. ↑ Tatsuya Wakasugi, A. Nishikawa, Kyoji Yamada, and Masahiro Sugiura. 1998. "Complete nucleotide sequence of the plastid genome from a fern, Psilotum nudum". Endocytobiology and Cell Research 13(supplement):147. see External links below.
  12. ↑ Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A et al. (2007). "The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses". J. Plant Res. 120 (2): 281–90. doi:10.1007/s10265-006-0055-y. PMID 17297557.
  13. ↑ Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008). "Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species". BMC Plant Biol. 8: 70. doi:10.1186/1471-2229-8-70. PMC 2443145. PMID 18570682.
  14. ↑ 14.0 14.1 14.2 14.3 14.4 14.5 14.6 Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J et al. (2007). "Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns". Proc. Natl. Acad. Sci. U.S.A. 104 (49): 19369–74. doi:10.1073/pnas.0709121104. PMC 2148296. PMID 18048330.
  15. ↑ Wu CS, Wang YN, Liu SM, Chaw SM (2007). "Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants". Mol. Biol. Evol. 24 (6): 1366–79. doi:10.1093/molbev/msm059. PMID 17383970.
  16. ↑ 16.0 16.1 Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW et al. (2005). "Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone". Mol. Biol. Evol. 22 (10): 1948–63. doi:10.1093/molbev/msi191. PMID 15944438.
  17. ↑ Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994). "Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii". Proc. Natl. Acad. Sci. U.S.A. 91 (21): 9794–8. Bibcode:1994PNAS...91.9794W. doi:10.1073/pnas.91.21.9794. PMC 44903. PMID 7937893.
  18. ↑ McCoy SR, Kuehl JV, Boore JL, Raubeson LA (2008). "The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates". BMC Evol. Biol. 8: 130. doi:10.1186/1471-2148-8-130. PMC 2386820. PMID 18452621.
  19. ↑ 19.0 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 Guisinger et al, Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae, J Mol Evol 70: 149–166 (2010)
  20. ↑ W Goremykin; Hirsch-Ernst KI; Wolfl S; Hellwig FH (2003). "Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm". Mol Bio Evol 20: 1445–1454.
  21. ↑ Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999). "Complete structure of the chloroplast genome of Arabidopsis thaliana". DNA Res. 6 (5): 283–90. doi:10.1093/dnares/6.5.283. PMID 10574454.
  22. ↑ Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002). "The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation". Mol. Biol. Evol. 19 (9): 1602–12. doi:10.1093/oxfordjournals.molbev.a004222. PMID 12200487.
  23. ↑ 23.0 23.1 23.2 23.3 Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL et al. (2007). "Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae)". Mol. Phylogenet. Evol. 45 (2): 547–63. doi:10.1016/j.ympev.2007.06.004. PMID 17644003.
  24. ↑ Goremykin, V.; Hirsch-Ernst, K. I.; wοΏ½Lfl, S.; Hellwig, F. H. (2003). "The chloroplast genome of the basal angiosperm Calycanthus fertilis – structural and phylogenetic analyses". Plant Systematics and Evolution 242 (1–4): 119–135. doi:10.1007/s00606-003-0056-4.
  25. ↑ Moore MJ, Bell CD, Soltis PS, Soltis DE (2007). "Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms". Proc. Natl. Acad. Sci. U.S.A. 104 (49): 19363–8. Bibcode:2007PNAS..10419363M. doi:10.1073/pnas.0708072104. PMC 2148295. PMID 18048334.
  26. ↑ Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (2006). "The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms". BMC Plant Biol. 6: 21. doi:10.1186/1471-2229-6-21. PMC 1599732. PMID 17010212.
  27. ↑ Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H (2007). "The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms". Plant Biotechnol. J. 5 (2): 339–53. doi:10.1111/j.1467-7652.2007.00245.x. PMC 3473179. PMID 17309688.
  28. ↑ Leseberg CH, Duvall MR (2009). "The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals". J. Mol. Evol. 69 (4): 311–8. doi:10.1007/s00239-009-9275-9. PMID 19777151.
  29. ↑ Plader W, Yukawa Y, Sugiura M, Malepszy S (2007). "The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis". Cell. Mol. Biol. Lett. 12 (4): 584–94. doi:10.2478/s11658-007-0029-7. PMID 17607527.
  30. ↑ 30.0 30.1 McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (2007). "Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta". BMC Plant Biol. 7: 57. doi:10.1186/1471-2229-7-57. PMC 2216012. PMID 17956636.
  31. ↑ Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007). "Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii". BMC Plant Biol. 7: 45. doi:10.1186/1471-2229-7-45. PMC 2089061. PMID 17714582.
  32. ↑ Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD et al. (2006). "Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms". BMC Genomics 7: 222. doi:10.1186/1471-2164-7-222. PMC 1579219. PMID 16945140.
  33. ↑ 33.0 33.1 33.2 Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW et al. (2006). "Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids". BMC Evol. Biol. 6: 77. doi:10.1186/1471-2148-6-77. PMC 1626487. PMID 17020608.
  34. ↑ Wolfe KH, Morden CW, Palmer JD (November 1992). "Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant". Proc. Natl. Acad. Sci. U.S.A. 89 (22): 10648–52. Bibcode:1992PNAS...8910648W. doi:10.1073/pnas.89.22.10648. PMC 50398. PMID 1332054.
  35. ↑ Steane DA (2005). "Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae)". DNA Res. 12 (3): 215–20. doi:10.1093/dnares/dsi006. PMID 16303753.
  36. ↑ Logacheva MD, Samigullin TH, Dhingra A, Penin AA (2008). "Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale -a wild ancestor of cultivated buckwheat". BMC Plant Biol. 8: 59. doi:10.1186/1471-2229-8-59. PMC 2430205. PMID 18492277.
  37. ↑ Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG et al. (2005). "Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes". Plant Mol. Biol. 59 (2): 309–22. doi:10.1007/s11103-005-8882-0. PMID 16247559.
  38. ↑ Rashid Ismael Hag Ibrahim; Jun-Ichi Azuma and Masahiro Sakamoto (2006). "Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast Genome with a Comparative Analysis of Sequences among 9 Dicot Plants". Genes & Genetic Systems 81 (5): 311–321. doi:10.1266/ggs.81.311.
  39. ↑ Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD et al. (2006). "The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms". BMC Genomics 7: 61. doi:10.1186/1471-2164-7-61. PMC 1513215. PMID 16553962.
  40. ↑ 40.0 40.1 Timme RE, Kuehl JV, Boore JL, Jansen RK (2007). "A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats". Am. J. Bot. 94 (3): 302–12. doi:10.3732/ajb.94.3.302. PMID 21636403.
  41. ↑ Lee HL, Jansen RK, Chumley TW, Kim KJ (2007). "Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions". Mol. Biol. Evol. 24 (5): 1161–80. doi:10.1093/molbev/msm036. PMID 17329229.
  42. ↑ Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV et al. (2008). "Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms". J. Mol. Evol. 66 (6): 555–64. doi:10.1007/s00239-008-9091-7. PMID 18463914.
  43. ↑ Haiying Liang, John E. Carlson, James H. Leebens-Mack, P. Kerr Wall, Lukas A. Mueller, Matyas Buzgo< Lena L. Landherr, Yi Hu, D. Scott DiLoreto, Daniel C. Ilut, Dawn Field, Steven D. Tanksley, Hong Ma, and Claude W. dePamphilis. 2008. "An EST database for Liriodendron tulipifera L. floral buds: the first EST resource for functional and comparative genomics in Liriodendron". Tree Genetics and Genomes 4(3):419-433. doi:10.1007/s11295-007-0120-2
  44. ↑ Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000). "Complete structure of the chloroplast genome of a legume, Lotus japonicus". DNA Res. 7 (6): 323–30. doi:10.1093/dnares/7.6.323. PMID 11214967.
  45. ↑ Daniell H, Wurdack KJ, Kanagaraj A, Lee SB, Saski C, Jansen RK (2008). "The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron". Theor. Appl. Genet. 116 (5): 723–37. doi:10.1007/s00122-007-0706-y. PMC 2587239. PMID 18214421.
  46. ↑ Ravi, V.; Khurana, Jitendra P.; Tyagi, Akhilesh K.; Khurana, Paramjit (2006). "The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis". Tree Genetics and Genomes 3 (1): 49–59. doi:10.1007/s11295-006-0051-3.
  47. ↑ 47.0 47.1 Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM et al. (2006). "Rapid and accurate pyrosequencing of angiosperm plastid genomes". BMC Plant Biol. 6: 17. doi:10.1186/1471-2229-6-17. PMC 1564139. PMID 16934154.
  48. ↑ Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T et al. (1986). "The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression". EMBO J. 5 (9): 2043–2049. PMC 1167080. PMID 16453699.
  49. ↑ 49.0 49.1 Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL et al. (2007). "Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus". BMC Genomics 8: 174. doi:10.1186/1471-2164-8-174. PMC 1925096. PMID 17573971.
  50. ↑ Goremykin VV, Hirsch-Ernst KI, WΓΆlfl S, Hellwig FH (2004). "The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm". Mol. Biol. Evol. 21 (7): 1445–54. doi:10.1093/molbev/msh147. PMID 15084683. Vancouver style error (help)
  51. ↑ 51.0 51.1 51.2 51.3 51.4 Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J et al. (2008). "The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution". Nucleic Acids Res. 36 (7): 2366–78. doi:10.1093/nar/gkn081. PMC 2367718. PMID 18299283.
  52. ↑ 52.0 52.1 Jun Yu et alii (117 authors). 2005. "The Genomes of Oryza sativa: a history of duplications". PLoS Biology 3(2):e38. Epub 2005 Feb 1.
  53. ↑ Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M et al. (1989). "The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals". Mol. Gen. Genet. 217 (2-3): 185–94. doi:10.1007/BF02464880. PMID 2770692.
  54. ↑ Kim KJ, Lee HL (2004). "Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants". DNA Res. 11 (4): 247–61. doi:10.1093/dnares/11.4.247. PMID 15500250.
  55. ↑ Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL et al. (2006). "The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants". Mol. Biol. Evol. 23 (11): 2175–90. doi:10.1093/molbev/msl089 (inactive 2015-01-14). PMID 16916942.
  56. ↑ Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH et al. (2006). "The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications". Mol. Biol. Evol. 23 (2): 279–91. doi:10.1093/molbev/msj029. PMID 16207935.
  57. ↑ Guo X, Castillo-RamΓ­rez S, GonzΓ‘lez V, Bustos P, FernΓ‘ndez-VΓ‘zquez JL, SantamarΓ­a RI et al. (2007). "Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts". BMC Genomics 8: 228. doi:10.1186/1471-2164-8-228. PMC 1940014. PMID 17623083. Vancouver style error (help)
  58. ↑ 58.0 58.1 "A revised classification of Santalales". Taxon 59 (2): 538–558. 2010.
  59. ↑ Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H et al. (2006). "Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts". Transgenic Res. 15 (5): 637–46. doi:10.1007/s11248-006-9009-3. PMID 16952016.
  60. ↑ Gerald A. Tuskan, et alii (110 authors). 2006. "The genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)". Science 313 (5793):1596-1604.
  61. ↑ Etienne Delannoy, Rampant Gene Loss in the Underground Orchid Rhizanthella gardneri Highlights Evolutionary Constraints on Plastid Genomes, Molecular Biology and Evolution advance access (Feb 2011)
  62. ↑ Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR et al. (2006). "The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence". Plant Cell Rep. 25 (12): 1369–79. doi:10.1007/s00299-006-0196-4. PMID 16835751.
  63. ↑ Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001). "The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization". Plant Mol. Biol. 45 (3): 307–15. doi:10.1023/A:1006478403810. PMID 11292076.
  64. ↑ Rosemarie C. Haberle, H. Matthew Fourcade, Jeffrey L. Boore, and Robert K. Jansen. 2008. "Extensive Rearrangements in the Chloroplast Genome of Trachelium caeruleum Are Associated with Repeats and tRNA Genes". Journal of Molecular Evolution 66(4):350=361. doi:10.1007/s00239-008-9086-4
  65. ↑ Zhengqiu Cai et al, Extensive Reorganization of the Plastid Genome of Trifolium subterraneum (Fabaceae) Is Associated with Numerous Repeated Sequences and Novel DNA Insertions, J Mol Evol 67: 696–704 (2008)doi:10.1007/s00239-008-9180-7
  66. ↑ Ogihara, Yasunari; Isono, Kazuriho; Kojima, Toshio; Endo, Akira; Hanaoka, Mitsumasa; Shiina, Takashi; Terachi, Toru; Utsugi, Shigeko et al. (2000). "Chinese Spring Wheat (Triticum aestivum L.) Chloroplast Genome: Complete Sequence and Contig Clones". Plant Molecular Biology Reporter 18 (3): 243–253. doi:10.1007/BF02823995.
  67. ↑ Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T et al. (2002). "Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA". Mol. Genet. Genomics 266 (5): 740–6. doi:10.1007/s00438-001-0606-9. PMID 11810247.
  68. ↑ Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ et al. (2006). "Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids". BMC Evol. Biol. 6: 32. doi:10.1186/1471-2148-6-32. PMC 1479384. PMID 16603088.
  69. ↑ Maier RM, Neckermann K, Igloi GL, KΓΆssel H (1995). "Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing". J. Mol. Biol. 251 (5): 614–28. doi:10.1006/jmbi.1995.0460. PMID 7666415. Vancouver style error (help)
  70. ↑ Turmel M, Otis C, Lemieux C (August 2002). "The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants". Proc. Natl. Acad. Sci. U.S.A. 99 (17): 11275–80. Bibcode:2002PNAS...9911275T. doi:10.1073/pnas.162203299. PMC 123247. PMID 12161560.
  71. ↑ Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S et al. (May 1997). "Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division". Proc. Natl. Acad. Sci. U.S.A. 94 (11): 5967–72. Bibcode:1997PNAS...94.5967W. doi:10.1073/pnas.94.11.5967. PMC 20890. PMID 9159184.
  72. ↑ Turmel M, Otis C, Lemieux C (2007). "An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus". BMC Genomics 8: 137. doi:10.1186/1471-2164-8-137. PMC 1894977. PMID 17537252.
  73. ↑ Smith DR et al. (2010). "The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA". BMC Plant Biol. 10: 83. doi:10.1186/1471-2229-10-83. PMC 3017802. PMID 20459666.
  74. ↑ de Koning AP, Keeling PJ (2006). "The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured". BMC Biol. 4: 12. doi:10.1186/1741-7007-4-12. PMC 1463013. PMID 16630350.
  75. ↑ de Cambiaire JC, Otis C, Turmel M, Lemieux C (2007). "The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae". BMC Genomics 8: 213. doi:10.1186/1471-2164-8-213. PMC 1931444. PMID 17610731.
  76. ↑ 76.0 76.1 76.2 Turmel M, Gagnon MC, O'Kelly CJ, Otis C, Lemieux C (March 2009). "The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids". Mol. Biol. Evol. 26 (3): 631–48. doi:10.1093/molbev/msn285. PMID 19074760.
  77. ↑ Turmel M, Otis C, Lemieux C (August 1999). "The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes". Proc. Natl. Acad. Sci. U.S.A. 96 (18): 10248–53. Bibcode:1999PNAS...9610248T. doi:10.1073/pnas.96.18.10248. PMC 17874. PMID 10468594.
  78. ↑ Brouard JS, Otis C, Lemieux C, Turmel M (2008). "Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer". BMC Genomics 9: 290. doi:10.1186/1471-2164-9-290. PMC 2442088. PMID 18558012.
  79. ↑ Pombert JF, Lemieux C, Turmel M (2006). "The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes". BMC Biol. 4: 3. doi:10.1186/1741-7007-4-3. PMC 1402334. PMID 16472375.
  80. ↑ Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y (April 2007). "The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction". Mol. Biol. Evol. 24 (4): 956–68. doi:10.1093/molbev/msm012. PMID 17251180.
  81. ↑ Pombert JF, Otis C, Lemieux C, Turmel M (September 2005). "The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages". Mol. Biol. Evol. 22 (9): 1903–18. doi:10.1093/molbev/msi182. PMID 15930151.
  82. ↑ de Cambiaire JC, Otis C, Lemieux C, Turmel M (2006). "The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands". BMC Evol. Biol. 6: 37. doi:10.1186/1471-2148-6-37. PMC 1513399. PMID 16638149.
  83. ↑ Turmel M, Otis C, Lemieux C (2005). "The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales". BMC Biol. 3: 22. doi:10.1186/1741-7007-3-22. PMC 1277820. PMID 16236178.
  84. ↑ BΓ©langer AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (November 2006). "Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum". Mol. Genet. Genomics 276 (5): 464–77. doi:10.1007/s00438-006-0156-2. PMID 16944205. Vancouver style error (help)
  85. ↑ Smith DR, Lee RW (March 2009). "The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA". BMC Genomics 10 (132): 132. doi:10.1186/1471-2164-10-132. PMC 2670323. PMID 19323823.
  86. ↑ Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K et al. (2003). "Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae". DNA Res. 10 (2): 67–77. doi:10.1093/dnares/10.2.67. PMID 12755171.
  87. ↑ GlΓΆckner G, Rosenthal A, Valentin K (2000). "The structure and gene repertoire of an ancient red algal plastid genome". J. Mol. Evol. 51 (4): 382–90. doi:10.1007/s002390010101 (inactive 2015-01-14). PMID 11040290. Vancouver style error (help)
  88. ↑ Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (2004). "Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids". J. Mol. Evol. 59 (4): 464–77. doi:10.1007/s00239-004-2638-3. PMID 15638458.
  89. ↑ Douglas SE, Penny SL (1999). "The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae". J. Mol. Evol. 48 (2): 236–44. doi:10.1007/PL00006462. PMID 9929392.
  90. ↑ E. Virginia Armbrust, et alii (42 authors). 2004. "The Genome of the Diatom Thalassiosira pseudonana: Ecology, Evolution, and Metabolism". Science 306(5693):79-86.
  91. ↑ Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007). "The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts". Mol. Biol. Evol. 24 (1): 54–62. doi:10.1093/molbev/msl129. PMID 16990439.
  92. ↑ Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B et al. (1993). "Complete sequence of Euglena gracilis chloroplast DNA". Nucleic Acids Res. 21 (15): 3537–44. doi:10.1093/nar/21.15.3537. PMC 331456. PMID 8346031.
  93. ↑ Cai X, Fuller AL, McDougald LR, Zhu G (2003). "Apicoplast genome of the coccidian Eimeria tenella". Gene 321: 39–46. doi:10.1016/j.gene.2003.08.008. PMID 14636990.
  94. ↑ Nowack EC, Melkonian M, GlΓΆckner G (2008). "Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes". Curr. Biol. 18 (6): 410–8. doi:10.1016/j.cub.2008.02.051. PMID 18356055. Vancouver style error (help)

External links