List of most luminous known stars

Below is a list of stars arranged in order of decreasing luminosity (increasing bolometric magnitude). Accurate measurement of stellar luminosities is quite difficult in practice, even when the apparent magnitude is measured accurately, for four reasons:

  1. The distance d to the star must be known, to convert apparent to absolute magnitude. Absolute magnitude is the apparent magnitude a star would have if it were 10 parsecs away from the viewer. Since apparent brightness decreases as the square of the distance (i.e. as 1/d2), a small error (e.g. 10%) in determining d implies an error ~2× as large (thus 20%) in luminosity. Stellar distances are only directly measured accurately out to d ~1000 lt-yrs.
  2. The magnitudes at the wavelengths measured must be corrected for those not observed. "Absolute bolometric magnitude" (which term is redundant, practically speaking, since bolometric magnitudes are nearly always "absolute", i.e., corrected for distance) is a measure of the star's luminosity, summing over its emission at all wavelengths, and thus the total amount of energy radiated by a star every second. Bolometric magnitudes can only be estimated by correcting for unobserved portions of the spectrum that have to be modeled, which is always an issue, and often a large correction. The list is dominated by hot blue stars which produce the majority of their energy output in the ultraviolet, but these may not necessarily be the brightest stars at visual wavelengths.
  3. Even the observed magnitudes must be corrected for the absorption or extinction of intervening interstellar or circumstellar dust and gas. This correction can be enormous and difficult to determine precisely. For example, until accurate infrared observations became possible ~50 years ago, the Galactic Center of the Milky Way was totally obscured to visual observations.
  4. A large proportion of stellar systems discovered with very high luminosity have later been found to be binary. Usually this results in the total system luminosity being reduced and then that lower luminosity is spread among several components. These binaries are common both because the conditions that produce high mass high luminosity stars also favour multiple star systems, but also because searches for highly luminous stars are inevitably biased towards detecting systems with multiple more normal stars combining to appear luminous.

Because of all these problems, other references may give very different lists of the most luminous stars (different ordering or different stars altogether). Data on different stars can be of somewhat different reliability, depending on the attention one particular star has received as well as largely differing physical difficulties in analysis (see the Pistol Star for an example). The last stars in the list are familiar nearby stars put there for comparison, and not among the most luminous known. It may also interest the reader to know that the Sun is more luminous than approximately 95% of all known stars in the local neighborhood (out to, say, a few hundred light years), due to enormous numbers of somewhat less massive stars that are cooler and often much less luminous. For perspective, the overall range of stellar luminosities runs from dwarfs less than 1/10,000th as luminous as the Sun, to supergiants over 1,000,000 times more luminous.

Data

This list is currently limited mostly to galactic and Magellanic Cloud objects, but a few stars in other local group galaxies can now be examined in enough detail to determine the luminosities. As of mid-2012 the list is more or less complete for stars down to 1,000,000 times the luminosity of the sun. Some suspected binaries in this magnitude range are excluded because there is insufficient information about the luminosity of the individual components. Selected fainter stars are also shown for comparison.

Despite their extreme luminosity, many of these stars are nevertheless too distant to be observed with the naked eye. Stars that are at least sometimes visible to the unaided eye have their apparent magnitude (6.5 or brighter) highlighted in blue.

Star name Bolometric
luminosity
(in solar units)
Absolute
bolometric
magnitude
Approx. distance
from solar system
(in light years)
Apparent
visible magnitude
R136a1 (in LMC) 7,400,000 −12.3[1] 160,000 12.28
WR 25 (in Carina Nebula)[lower-alpha 1] 6,300,000 −12.25[2] 8,000 8.80
NGC 2363-V1[lower-alpha 2] 6,300,000 −12.25[3][4] 11,100,000 17.88
BAT99-98 (AB12 in LMC) 5,000,000[1] -12.0 165,000 13.70
η Car (in Carina Nebula)[lower-alpha 3] 5,000,000 −12.0[5] 7,500 −0.8 to 7.9[6]
BAT99-116 (Mk34 in LMC)[lower-alpha 4] 4,900,000 −11.9[7] 160,000 13.10
R136a2 (in LMC) 4,900,000 −11.9[1] 160,000 12.34
HD 38282 (R144 in LMC)[lower-alpha 5] 4,500,000 -11.9[8] 160,000 11.11
V4998 Sagittarii (near Quintuplet Cluster) ~4,000,000 −11.7[9] 25,000
Var A-1 (in M31) 3,200,000 −11.5[10] 2,450,000
Peony Star (WR 102ka) 3,200,000 −11.5 26,100
VFTS 682 (in LMC) 3,200,000 −11.5 160,000 16.1
BAT99-33 (R99 in LMC) 3,200,000 −11.4[1] 160,000 11.45
R136a3 (in LMC) 3,200,000 −11.4[1] 160,000 12.97
LSS 4067 3,000,000 −11.4[11] 8,200 11.64
R136c (in LMC) 3,000,000 −11.4[1] 160,000 12.86
NGC 3603-B 2,900,000 −11.3[7] 24,000 11.33
HD 93250 (in Carina Nebula) 2,800,000 −11.3[11] 7,500 7.50
WR 102hb 2,600,000 −11.3[12] 26,000
AFGL 2298[lower-alpha 6] 2,500,000 −11.25[3] 33,000
HD 5980B (in SMC) 2,500,000 −11.25 200,000 11.9
Melnick 42 (in LMC) 2,500,000 −11.25 160,000 12.8
WR 102ea 2,500,000 −11.25[12] 26,000
WR 85 2,500,000 −11.25[2] 15,300 10.03
HD 93129A (in Carina Nebula)[lower-alpha 7] 2,500,000 −11.25 7,500 6.97 (combined A+B)
BAT99-117 (R146 in LMC) 2,500,000 −11.2[1] 160,000 13.116
NGC 3603-A1a 2,500,000 −11.2[7] 24,000 11.18 (combined A1a + A1b)
Var 83 (in M33) 2,240,000 −11.1[13] 3,000,000 16.40
WR 158 2,200,000 −11.1[2] 26,000 11.24
Arches-F6 2,300,000 −11.1 25,000
Arches-F9 2,300,000 −11.1 25,000
WR 24 (in Carina Nebula) 2,200,000 −11.1[2] 8,200 6.48
HDE 269810 (in LMC) 2,200,000 −11.1[14] 170,000 12.28
Cygnus OB2 #516 2,200,000 −11.1 5000
BAT99-96 (in LMC) 2,200,000 −11.0[1] 160,000 13.76
WR 102c 2,000,000 −11.0[15] 26,000
LBV 1806-20 2,000,000 −11.0 38,700
Arches-F4 2,000,000 −11.0 25,000
WR 82 2,000,000 −11.0[2] 17,200 11.55
WR 131 2,000,000 −11.0[2] 38,600 12.08
WR 147[lower-alpha 8] 2,000,000 −11.0[2] 2,100 14.89
HD 5980A[lower-alpha 9] (in SMC) 2,000,000 −11.0[16] 200,000 11.7
Arches-F7 2,000,000 −11.0 25,000
Arches-F1 2,000,000 −11.0 25,000
V429 Car A (WR 22; in Carina Nebula) 2,000,000 −11.0 8,200 6.42
R136b (in LMC) 2,000,000 −11.0 165,000 13.24
Cygnus OB2 #12 1,900,000 −10.9[17] 5000 11.4
Wray 17-96 1,800,000 −10.9[18] 15,000 17.8
V2180 Cyg (=WR 130) 1,800,000 −10.9[2] 8,800 12.14
V4650 Sgr 1,800,000 −10.9[19] 25,000
VFTS 506 (in LMC) 1,750,000 −10.9[20] 160,000 13.31
VFTS 16 (LMC) 1,700,000 −10.8[20] 160,000 13.55
Cygnus OB2-#7 1,700,000 −10.8 5000 12.7
BAT99-122 (R147 in LMC) 1,700,000 −10.7[1] 160,000 12.75
Arches-F12 1,600,000 −10.8 25,000
AF Andromedae (in M31) 1,600,000 −10.8[13] 2,500,000  
LHO 110 1,600,000 −10.8[12] 26,000
SMC AB 8A (in SMC) 1,600,000 −10.8[21] 200,000 12.9 (combined)
V378 Vel (=WR 12) 1,600,000 −10.75[2] 16,500 10.78
The Pistol Star 1,600,000 −10.75 25,000
WR 78 1,600,000 −10.75[2] 6,500 6.49
WR 89 1,600,000 −10.75[2] 9,400 11.02
WR 107 1,600,000 −10.75[2] 13,400 14.1
WR 148 1,600,000 −10.75[2] 27,100 10.3
WR 102i 1,500,000 −10.7[12] 26,000
NGC 3603-A1b 1,500,000 −10.6[7] 24,000 11.18 (combined A1a + A1b)
VFTS 621 (in LMC) 1,400,000 −10.6[20] 160,000 15.39
Arches-F15 1,400,000 −10.6 25,000
V396 Carinae (WR 16; in Carina Nebula) 1,400,000 −10.6[2] 5,000 8.34
WR 108 1,400,000 −10.6[2] 18,300 9.89
WR 66 1,400,000 −10.6[2] 10,700 11.34
Cygnus OB2 #771 1,400,000 −10.6 5000
R126 (in LMC) 1,400,000 −10.6 160,000 10.91
V729 Cyg A 1,400,000 −10.6 5000
BAT99-100 (R134 in LMC) 1,400,000 −10.5[1] 160,000 12.02
Tr 27-27 1,350,000 −10.5[11] 8,200  
WR 87 1,300,000 −10.5[2] 9,400 11.95
WR 42e 1,300,000 −10.5[22][lower-alpha 10] 25,000 14.53
Arches-F3 1,300,000 −10.5 25,000
Arches-F8 1,300,000 −10.5 25,000
WR 156 1,300,000 −10.5[2] 11,700 11.01
R139 A (in LMC) 1,300,000 −10.5[23] 160,000 12.0 (combined)
V729 Cygni B 1,300,000 −10.5 5000
HD 50064 1,300,000 −10.5[24] 9,500 8.21
R136a5 (in LMC) 1,250,000 −10.5 165,000 13.71
VFTS 259 (in LMC) 1,250,000 −10.5[20] 160,000 13.65
WR 102d[12] 1,200,000 −10.4 26,000
AB7 1,200,000 −10.4 197,000 13.016
Arches-F28 1,170,000 -10.4 25,000
BAT99-104 (in LMC) 1,100,000 −10.4[1] 160,000 12.5
V385 Carinae (WR 40; in Carina Nebula) 1,100,000 −10.4[2] 7,400 7.85
V1402 Aquilae (=WR 123) 1,100,000 −10.4[2] 19,500 11.1
Arches-F18 1,100,000 −10.4 25,000
Cygnus OB2-#8B 1,100,000 −10.4 5000 12.7
Cygnus OB2-#10 1,100,000 −10.4 5000 12.7
Cygnus OB2-#22 1,100,000 −10.4 5000 12.7
Var B (in M33) 1,100,000 −10.4[13] 3,000,000  
68 Cygni A 1,050,000 −10.3[25] 4600 4.98 to 5.09
BAT99-94 (R135 in LMC) 1,000,000 −10.3[26] 160,000 14.52
AG Car 1,000,000 −10.3[27] 6000 5.7 to 9.0
Arches-F2 1,000,000 −10.25 25,000
BAT99-68 (in LMC) 1,000,000 −10.25[1] 160,000 12.4
Arches-F14 1,000,000 −10.25 25,000
V460 Scuti (=WR 116) 1,000,000 −10.25[2] 8,100 13.38
QR Sge (=WR 124) 1,000,000 −10.25[2] 11,000 11.5
S Dor (in LMC) 1,000,000 −10.25 169,000 8.6 to 11.5 (B)
R136a6 (in LMC) 1,000,000 −10.25 165,000 13.35
The following naked-eye stars are listed for the purpose of comparison.
P Cygni 610,000 −9.7 5,900 4.8
ρ Cas 550,000 −9.6 12,000 4.1 to 6.2
VY CMa 450,000 −9.4[28] 4900 6.5 to 9.6
ε Ori 380,000 −9.2 1300 1.70
ζ Pup 360,000 −9.0 1090 2.21
RW Cep 350,000 −9.11 11,500 6.52
μ Cep (the Garnet Star) 340,000 −9.08 1900 4.04
VV Cep A 315,000 −9.0 2400 4.91
Plaskett's Star A 224,000 −8.6 6600 6.06 (A + B)
θ1 Ori C 220,000 −8.6 1500 5.13
Deneb 196,000 −8.38[29] 2600 1.25
Betelgeuse 135,000 -8.24[30][31] 643 0.58
Rigel 117,490 −7.84 860 0.12
Antares 66,000 −7.2 600 0.92
Canopus 12,900 −5.53 310 −0.62
Polaris 2,200 −3.6 433 1.97
Aldebaran 350 −0.63 65 0.85
Arcturus 210 −0.31 37 −0.04
Capella 78.5 0.4 42 0.08
Vega 37 0.58 25 0.00
Sirius 25.4 1.4 8.6 −1.46
α Centauri A 1.519 4.38 4.4 −0.01
Sun 1.00 4.83 0.0000158 −26.74
  1. 208 day binary
  2. Luminous Blue Variable in external galaxy NGC 2363, that appears to be undergoing a "great outburst" like eta Carinae but less luminous.
  3. Recently identified as a binary system, or possibly three stars. The secondary is also luminous at around 1,000,000 times the sun, but almost completely swamped by the primary.
  4. Suspected as binary from extreme X-ray luminosity and variable radial velocity.
  5. Binary system containing two luminous WNh stars.
  6. Luminous Blue Variable, peak luminosity shown.
  7. This is a known binary with two fairly similar components, but the exact details of each star are not clear. Although the luminosity of the two combined is around 2,500,000, the primary is most likely nearer 1,500,000 and the secondary about 1,000,000.
  8. This is a binary system but the secondary is much less luminous than the primary
  9. Variable, luminosity was five times higher at outburst in 1994.
  10. The cited reference calculates the absolute bolometric magnitude as −10.5, then quotes a bolometric luminosity of 3.2 million times the sun which does not match. Another references estimates the luminosity directly as 1.6–3.2 million times the sun.

Note that even the most luminous stars are much less luminous than the more luminous persistent extragalactic objects, such as quasars. For example, 3C 273 has an average apparent magnitude of 12.8 (when observing with a telescope), but an absolute magnitude of −26.7. If this object were 10 parsecs away from Earth it would appear nearly as bright in the sky as the Sun (apparent magnitude −26.74). This quasar's luminosity is, therefore, about 2 trillion (1012) times that of the Sun, or about 100 times that of the total light of average large galaxies like our Milky Way. (Note that quasars often vary somewhat in luminosity.)

In terms of gamma rays, a magnetar (type of neutron star) called SGR 1806-20, had an extreme burst reach Earth on 27 December 2004. It was the brightest event known to have impacted this planet from an origin outside the Solar System; if these gamma rays were visible, with an absolute magnitude of approx. −29, it would be brighter than the Sun (as measured by the Swift spacecraft).

The Gamma-ray burst GRB 971214 measured in 1998 was at the time thought to be the most energetic event in the universe, with the equivalent energy of several hundred supernovae. Later studies pointed out that the energy was probably the energy of one supernova which had been "beamed" towards Earth by the geometry of a relativistic jet.

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf-Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 Hamann, W. -R.; Gräfener, G.; Liermann, A. (2006). "The Galactic WN stars". Astronomy and Astrophysics 457 (3): 1015. arXiv:astro-ph/0608078. Bibcode:2006A&A...457.1015H. doi:10.1051/0004-6361:20065052.
  3. 3.0 3.1 Clark, J. S.; Crowther, P. A.; Larionov, V. M.; Steele, I. A.; Ritchie, B. W.; Arkharov, A. A. (2009). "Bolometric luminosity variations in the luminous blue variable AFGL2298". Astronomy and Astrophysics 507 (3): 1555. arXiv:0909.4160. Bibcode:2009A&A...507.1555C. doi:10.1051/0004-6361/200912358.
  4. Petit, V. R.; Drissen, L.; Crowther, P. A. (2006). "Spectral Evolution of the Luminous Blue Variable NGC 2363-V1. I. Observations and Qualitative Analysis of the Ongoing Giant Eruption". The Astronomical Journal 132 (5): 1756. Bibcode:2006AJ....132.1756P. doi:10.1086/506512.
  5. Humphreys, R. M. (2005). "η Carinae – The Observational Story, 1600 to 2004". ASP Conference Series 332: 14–21. Bibcode:2005ASPC..332...14H.
  6. "Query= Eta Car". General Catalogue of Variable Stars. Sternberg Astronomical Institute. Retrieved 2010-11-24.
  7. 7.0 7.1 7.2 7.3 Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society 408 (2): 731. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  8. Sana, H.; Van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; De Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R. (2013). "R144 revealed as a double-lined spectroscopic binary". Monthly Notices of the Royal Astronomical Society: Letters 432: 26. doi:10.1093/mnrasl/slt029.
  9. Mauerhan, J. C.; Morris, M. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Stolovy, S. R.; Lang, C.; Glass, I. S. (2010). "Discovery of a Luminous Blue Variable with an Ejection Nebula Near the Quintuplet Cluster". The Astrophysical Journal 713: L33. arXiv:1002.3379. Bibcode:2010ApJ...713L..33M. doi:10.1088/2041-8205/713/1/L33.
  10. Sholukhova, O.; Bizyaev, D.; Fabrika, S.; Sarkisyan, A.; Malanushenko, V.; Valeev, A. (2014). "New Luminous Blue Variables in the Andromeda galaxy". arXiv:1412.5319v1 [astro-ph.SR].
  11. 11.0 11.1 11.2 Massey, P.; Degioia-Eastwood, K.; Waterhouse, E. (2001). "The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. II. Results from 12 Galactic Clusters and OB Associations". The Astronomical Journal 121 (2): 1050. arXiv:astro-ph/0010654. Bibcode:2001AJ....121.1050M. doi:10.1086/318769.
  12. 12.0 12.1 12.2 12.3 12.4 Liermann, A.; Hamann, W. -R.; Oskinova, L. M.; Todt, H.; Butler, K. (2010). "The Quintuplet cluster". Astronomy & Astrophysics 524: A82. arXiv:1011.5796. Bibcode:2010A&A...524A..82L. doi:10.1051/0004-6361/200912612.
  13. 13.0 13.1 13.2 Szeifert, T.; Humphreys, R. M.; Davidson, K.; Jones, T. J.; Stahl, O.; Wolf, B.; Zickgraf, F.-J. (1996). "HST and groundbased observations of the 'Hubble-Sandage' variables in M 31 and M 33". Astronomy and Astrophysics 314: 131–145. Bibcode:1996A&A...314..131S.
  14. Walborn, N. R.; Morrell, N. I.; Howarth, I. D.; Crowther, P. A.; Lennon, D. J.; Massey, P.; Arias, J. I. (2004). "A CNO Dichotomy among O2 Giant Spectra in the Magellanic Clouds". The Astrophysical Journal 608 (2): 1028. arXiv:astro-ph/0403557. Bibcode:2004ApJ...608.1028W. doi:10.1086/420761.
  15. Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  16. Drissen, L.; Crowther, P. A.; Smith, L. J.; Robert, C.; Roy, J. R.; Hillier, D. J. (2001). "Physical Parameters of Erupting Luminous Blue Variables: NGC 2363‐V1 Caught in the Act". The Astrophysical Journal 546: 484. arXiv:astro-ph/0008221. Bibcode:2001ApJ...546..484D. doi:10.1086/318264.
  17. Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics 541: A145. arXiv:1202.3991. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472.
  18. Egan, M. P.; Clark, J. S.; Mizuno, D. R.; Carey, S. J.; Steele, I. A.; Price, S. D. (2002). "An Infrared Ring Nebula around MSX5C G358.5391+00.1305: The True Nature of Suspected Planetary Nebula Wray 17‐96 Determined via Direct Imaging and Spectroscopy". The Astrophysical Journal 572 (1): 288. Bibcode:2002ApJ...572..288E. doi:10.1086/340222.
  19. Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal 691 (2): 1816. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
  20. 20.0 20.1 20.2 20.3 Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R. (2014). "The VLT-FLAMES Tarantula Survey XVII. Physical and wind properties of massive stars at the top of the main sequence". Astronomy & Astrophysics 570 (38): A38. arXiv:1407.1837. doi:10.1051/0004-6361/201423643.
  21. Pasemann, D.; Rühling, U.; Hamann, W.-R. (2011). "Spectral analyses of the Wolf-Rayet stars in the Small Magellanic Cloud". Bulletin de la Société Royale des Sciences de Liège 80: 180–184. Bibcode:2011BSRSL..80..180P.
  22. Roman-Lopes, A. (2012). "A Galactic O2 If*/WN6 star possibly ejected from its birthplace in NGC 3603". Monthly Notices of the Royal Astronomical Society Letters 427 (1): L65–L69. arXiv:1209.1598. Bibcode:2012MNRAS.427L..65R. doi:10.1111/j.1745-3933.2012.01346.x.
  23. Taylor, W. D.; Evans, C. J.; Sana, H.; Walborn, N. R.; De Mink, S. E.; Stroud, V. E.; Alvarez-Candal, A.; Barbá, R. H.; Bestenlehner, J. M.; Bonanos, A. Z.; Brott, I.; Crowther, P. A.; De Koter, A.; Friedrich, K.; Gräfener, G.; Hénault-Brunet, V.; Herrero, A.; Kaper, L.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Morrell, N.; Monaco, L.; Vink, J. S. (2011). "The VLT-FLAMES Tarantula Survey". Astronomy & Astrophysics 530: L10. arXiv:1103.5387. Bibcode:2011A&A...530L..10T. doi:10.1051/0004-6361/201116785.
  24. Aerts, C.; Lefever, K.; Baglin, A.; Degroote, P.; Oreiro, R.; Vučković, M.; Smolders, K.; Acke, B.; Verhoelst, T.; Desmet, M.; Godart, M.; Noels, A.; Dupret, M. -A.; Auvergne, M.; Baudin, F.; Catala, C.; Michel, E.; Samadi, R. (2010). "Periodic mass-loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD 50064". Astronomy and Astrophysics 513: L11. arXiv:1003.5551. Bibcode:2010A&A...513L..11A. doi:10.1051/0004-6361/201014124.
  25. Hohle, M. M.; Neuhäuser, R.; Schutz, B. F. (2010). "Masses and luminosities of O- and B-type stars and red supergiant". Astronomische Nachrichten 331 (4): 349–361. arXiv:1003.2335. Bibcode:2010AN....331..349H. doi:10.1002/asna.200911355. Vizier catalog entry
  26. Rühling, U. (2008). WN-Sterne in der LMC (PDF) (Thesis) (in German). University of Potsdam.
  27. Groh, J. H.; Hillier, D. J.; Damineli, A. (2006). "AG Carinae: A Luminous Blue Variable with a High Rotational Velocity". The Astrophysical Journal Letters 638 (1): L33. arXiv:astro-ph/0512372. Bibcode:2006ApJ...638L..33G. doi:10.1086/500928.
  28. Humphreys, R. M. (2006). "VY Canis Majoris: The Astrophysical Basis of Its Luminosity". arXiv:astro-ph/0610433.
  29. Schiller, F.; Przybilla, N. (2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics 479 (3): 849. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. "Earlier data had yielded a luminosity of 54,000 L with a radius of 108 R"
  30. Harper, G. M.; Brown, A.; Guinan, E. F. (2008). "A New Vla-Hipparcos Distance to Betelgeuse and Its Implications". The Astronomical Journal 135 (4): 1430. Bibcode:2008AJ....135.1430H. doi:10.1088/0004-6256/135/4/1430.
  31. Kaler, J. (20 February 1998). "Betelgeuse". Star of the Week.

External links