List of integrals of inverse trigonometric functions

The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals.

Arcsine function integration formulas

\int\arcsin(x)\,dx=
  x\arcsin(x)+
 {\sqrt{1-x^2}}+C
\int\arcsin(a\,x)\,dx=
x\arcsin(a\,x)+
  \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arcsin(a\,x)\,dx=
  \frac{x^2\arcsin(a\,x)}{2}-
  \frac{\arcsin(a\,x)}{4\,a^2}+
  \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arcsin(a\,x)\,dx=
  \frac{x^3\arcsin(a\,x)}{3}+
  \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arcsin(a\,x)\,dx=
  \frac{x^{m+1}\arcsin(a\,x)}{m+1}\,-\,
  \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)
\int\arcsin(a\,x)^2\,dx=
  -2\,x+x\arcsin(a\,x)^2+
  \frac{2\sqrt{1-a^2\,x^2}\arcsin(a\,x)}{a}+C
\int\arcsin(a\,x)^n\,dx=
  x\arcsin(a\,x)^n\,+\,
  \frac{n\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n-1}}{a}\,-\,
  n\,(n-1)\int\arcsin(a\,x)^{n-2}\,dx
\int\arcsin(a\,x)^n\,dx=
  \frac{x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\,
  \frac{\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n+1}}{a\,(n+1)}\,-\,
  \frac{1}{(n+1)\,(n+2)}\int\arcsin(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)

Arccosine function integration formulas

\int\arccos(x)\,dx=
  x\arccos(x)-
  {\sqrt{1-x^2}}+C
\int\arccos(a\,x)\,dx=
  x\arccos(a\,x)-
  \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arccos(a\,x)\,dx=
  \frac{x^2\arccos(a\,x)}{2}-
  \frac{\arccos(a\,x)}{4\,a^2}-
  \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arccos(a\,x)\,dx=
  \frac{x^3\arccos(a\,x)}{3}-
  \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arccos(a\,x)\,dx=
  \frac{x^{m+1}\arccos(a\,x)}{m+1}\,+\,
  \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)
\int\arccos(a\,x)^2\,dx=
  -2\,x+x\arccos(a\,x)^2-
  \frac{2\sqrt{1-a^2\,x^2}\arccos(a\,x)}{a}+C
\int\arccos(a\,x)^n\,dx=
  x\arccos(a\,x)^n\,-\,
  \frac{n\sqrt{1-a^2\,x^2}\arccos(a\,x)^{n-1}}{a}\,-\,
  n\,(n-1)\int\arccos(a\,x)^{n-2}\,dx
\int\arccos(a\,x)^n\,dx=
  \frac{x\arccos(a\,x)^{n+2}}{(n+1)\,(n+2)}\,-\,
  \frac{\sqrt{1-a^2\,x^2}\arccos(a\,x)^{n+1}}{a\,(n+1)}\,-\,
  \frac{1}{(n+1)\,(n+2)}\int\arccos(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)

Arctangent function integration formulas

\int\arctan(x)\,dx=
  x\arctan(x)-
  \frac{\ln\left(x^2+1\right)}{2}+C


\int\arctan(a\,x)\,dx=
  x\arctan(a\,x)-
  \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arctan(a\,x)\,dx=
  \frac{x^2\arctan(a\,x)}{2}+
  \frac{\arctan(a\,x)}{2\,a^2}-\frac{x}{2\,a}+C
\int x^2\arctan(a\,x)\,dx=
  \frac{x^3\arctan(a\,x)}{3}+
  \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}-\frac{x^2}{6\,a}+C
\int x^m\arctan(a\,x)\,dx=
  \frac{x^{m+1}\arctan(a\,x)}{m+1}-
  \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

Arccotangent function integration formulas

\int\arccot(x)\,dx=
  x\arccot(x)+
  \frac{\ln\left(x^2+1\right)}{2}+C


\int\arccot(a\,x)\,dx=
  x\arccot(a\,x)+
  \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arccot(a\,x)\,dx=
  \frac{x^2\arccot(a\,x)}{2}+
  \frac{\arccot(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C
\int x^2\arccot(a\,x)\,dx=
  \frac{x^3\arccot(a\,x)}{3}-
  \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}+\frac{x^2}{6\,a}+C
\int x^m\arccot(a\,x)\,dx=
  \frac{x^{m+1}\arccot(a\,x)}{m+1}+
  \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

Arcsecant function integration formulas

\int\arcsec(x)\,dx=
  x\arcsec(x)-\operatorname{arctan}\,\sqrt{1-\frac{1}{x^2}}+C


\int\arcsec(a\,x)\,dx=
  x\arcsec(a\,x)-
  \frac{1}{a}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arcsec(a\,x)\,dx=
  \frac{x^2\arcsec(a\,x)}{2}-
  \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arcsec(a\,x)\,dx=
  \frac{x^3\arcsec(a\,x)}{3}\,-\,
  \frac{1}{6\,a^3}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,-\,
  \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arcsec(a\,x)\,dx=
  \frac{x^{m+1}\arcsec(a\,x)}{m+1}\,-\,
  \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)

Arccosecant function integration formulas

\int\arccsc(x)\,dx= 
  x\arccsc(x) \, + \,
 \ln\left|x+\sqrt{x^2-1}\right|\,+\,C=
  x\arccsc(x)\,+\,
 \operatorname{arccosh}(x)\,+\,C
\int\arccsc(a\,x)\,dx=
  x\arccsc(a\,x)+
  \frac{1}{a}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arccsc(a\,x)\,dx=
  \frac{x^2\arccsc(a\,x)}{2}+
  \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arccsc(a\,x)\,dx=
  \frac{x^3\arccsc(a\,x)}{3}\,+\,
  \frac{1}{6\,a^3}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,
  \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arccsc(a\,x)\,dx=
  \frac{x^{m+1}\arccsc(a\,x)}{m+1}\,+\,
  \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)