List of diving hazards and precautions
Divers face specific physical and health risks when they go underwater with scuba or other diving equipment, or use high pressure breathing gas. Some of these factors also affect people who work in raised pressure environments out of water, for example in caissons.
A hazard is any agent or situation that poses a level of threat to life, health, property, or environment. Most hazards remain dormant or potential, with only a theoretical risk of harm, and when a hazard becomes active, and produces undesirable consequences, it is called an incident and may culminate in an emergency or accident. Hazard and vulnerability interact with likelihood of occurrence to create risk, which can be the probability of a specific undesirable consequence of a specific hazard, or the combined probability of undesirable consequences of all the hazards of a specific activity.
The presence of a combination of several hazards simultaneously is common in diving, and the effect is generally increased risk to the diver, particularly where the occurrence of an incident due to one hazard triggers other hazards with a resulting cascade of incidents. Many diving fatalities are the result of a cascade of incidents overwhelming the diver, who should be able to manage any single reasonably foreseeable incident.
The assessed risk of a dive would generally be considered unacceptable if the diver is not expected to cope with any single reasonably foreseeable incident with a significant probability of occurrence during that dive. Precisely where the line is drawn depends on circumstances. Commercial diving operations tend to be less tolerant of risk than recreational, particularly technical divers, who are less constrained by occupational health and safety legislation.
This article lists hazards that a diver may be exposed to during a dive, and possible consequences of these hazards, with some details of the proximate causes of the listed consequences. A listing is also given of precautions that may be taken to reduce vulnerability, either by reducing the risk or mitigating the consequences.
According to a North American 1972 analysis of calendar year 1970 data, diving was, based on man hours, 96 times riskier than driving an automobile.[1] According to a 2000 Japanese study, every hour of recreational diving is 36 to 62 times riskier than automobile driving.[2]
The aquatic environment
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Any liquid environment. | Inhalation of liquid (water), usually causing laryngospasm and suffocation caused by water entering the lungs and preventing the absorption of oxygen leading to cerebral hypoxia.[3] |
| |
Secondary drowning can take place up to 72 hours after a near drowning incident, and may lead to a serious condition or death. | Physiological responses to contaminants in the lung due to inhalation of liquid.
|
Prompt and appropriate medical treatment after near drowning. |
Use of breathing equipment in an underwater environment
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Oxygen partial pressure in the breathing gas is too low to sustain normal activity or consciousness. | Hypoxia: Reduced level of consciousness, seizures, coma, death. Severe hypoxia induces a blue discoloration of the skin, called cyanosis, but this may also be present in a diver due to peripheral vasoconstriction resulting from exposure to cold. There is typically no warning of onset or development. The extreme case, anoxia, implies an absence of oxygen and is rapidly fatal. |
Equipment failure: A faulty or misused rebreather can provide the diver with hypoxic gas. |
|
Some breathing gas mixtures for deep diving such as trimix and heliox are hypoxic at shallow depths, and do not contain enough oxygen to maintain consciousness, or sometimes life, at or near the surface.[5] |
| ||
Internal corrosion of full cylinder standing for a long time can potentially use up some of the oxygen in the contained gas before the diver uses the cylinder.[7][8] |
| ||
Loss of breathing gas supply. | May result in drowning, occasionally asphyxia without water aspiration. | Equipment failure: Several modes are possible.
|
|
Running out of breathing gas because of poor gas monitoring discipline.[11] |
| ||
Running out of breathing gas because of being trapped by nets or lines. |
| ||
Running out of breathing gas because of being trapped or lost in enclosed spaces underwater, such as caves or shipwrecks. |
| ||
Inhalation of salt spray | Salt water aspiration syndrome: a reaction to salt in the lungs. Early symptoms are:[12]
|
Inhaling a mist of sea water from a faulty demand valve. |
|
Carbon monoxide contamination of breathing gas | Carbon monoxide poisoning.
|
Contaminated air supplied by a compressor that sucked in products of combustion, often its own engine's exhaust gas. Aggravated by increased partial pressure due to depth. |
|
Oil getting into the air and partially oxidising in the compressor cylinder, like in a diesel engine, due to worn seals and use of unsuitable oils, or an overheated compressor.[19] |
| ||
Hydrocarbon (oil) contamination of air supply. | Emphysema or lipid pneumonia (more to be added). | Caused by inhaling oil mist. This may happen gradually over a long time and is a particular risk with a surface supplied air feed.[20] |
|
Excessive carbon dioxide in breathing gas | Carbon dioxide poisoning or hypercapnia.[21][22]
|
|
|
The scrubber of a diving rebreather, fails to absorb enough of the carbon dioxide in recirculated breathing gas. This can be due to the scrubber absorbent being exhausted, the scrubber being too small, or the absorbent being badly packed or loose, causing "tunneling" and "scrubber breakthrough" when the gas emerging from the scrubber contains excessive carbon dioxide. |
| ||
Filling of cylinders with compressed air taken from an area of raised concentration of carbon dioxide. |
| ||
Breathing the wrong gas | Consequences depend on the circumstances, but may include oxygen toxicity, hypoxia, nitrogen narcosis, anoxia, and toxic effects of gases not intended for breathing. Death or serious injury is likely. |
|
|
Displacement of demand valve (DV) from the diver's mouth. | Inability to breathe until demand valve is replaced. This should not normally be a major problem as techniques for DV recovery are part of basic training. Nevertheless it is an urgent problem and may be exacerbated by loss of the mask and/or disorientation. |
|
|
Caustic cocktail |
|
Leakage of water into the breathing loop of a rebreather, which dissolves alkaline material used to chemically remove carbon dioxide from exhaled air. This contaminated water may move further along the breathing loop and reach the diver's mouth, where it may cause choking, and in the case of strong alkalis, caustic corrosion of the mucous membranes. |
|
Exposure to a pressurised environment and pressure changes
Pressure changes during descent
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Sudden chilling of the inner ear. | Vertigo, including dizziness and disorientation, particularly if one side is more chilled than the other. | Cold water in the outer ear passage, chilling the inner ear, particularly severe if the eardrum is ruptured. | Use of a hood to keep the head covered. Water leaking into the hood will warm up before entering the external auditory opening and will be reasonably warm before reaching the eardrum, and will soon reach body temperature if flushing is minimised. |
Pressure difference over eardrum | Burst or stretched eardrum: The eardrum is stretched due to a pressure difference between the outer and middle ear spaces. If the eardrum stretches sufficiently, it may rupture, which is more painful. Water entering the middle ear may cause vertigo when the inner ear is cooled. Contaminants in the water may cause infection.[29] |
The pressure in the middle ear not equalizing with external (ambient) pressure, usually due to failure to clear the Eustachian tube.[29] | Ears can be equalized early and often during the descent, before the stretching is painful. The diver can check if the ears will clear on the surface as a precondition for diving.[29] |
Reversed ear may be caused by the outer ear passage being blocked and the pressure remaining low, while the middle ear pressure increases by equalising with ambient pressure through the eustachian tubes, casing a pressure differential and stretching the eardrum, which may eventually rupture.[30] |
| ||
Pressure difference between paranasal sinus and ambient pressure. | Sinus squeeze: Damage to the sinuses usually resulting in pain, and often burst blood vessels and nosebleed.[31] |
Obstruction to the sinus ducts leading to pressure differences between the interior of the sinus and the external pressure.[31] | Do not dive with conditions such as the common cold or allergies that cause nasal congestion.[31] |
Localised low pressure in the diving mask. | Mask squeeze: Squeeze damage to blood vessels around the eyes.[32] |
Caused by local low pressure in the air space inside a diving half-mask. Ambient pressure increase during descent not balanced inside mask air space. |
|
Reduction of volume of airspace in drysuit. |
|
|
Modern drysuits have a low pressure air hose connection and valve to inflate the drysuit from the cylinder. Adding sufficient air to maintain the bulk of the undersuit will prevent suit squeeze and stabilize buoyancy of the suit. |
Pressure difference between lung gas contents and ambient pressure | Lung squeeze: Lung damage. | Free diving to extreme depth. | It can be avoided by limiting free diving depth to capacity of lungs to compensate,[33] and by training exercises to increase compliance of chest cavity. |
Rupture or supply pressure failure of a surface supply hose with simultaneous failure of the non-return valve.[33] | Maintenance and pre-dive tests of non-return valves on the helmet or full face mask. | ||
Helmet squeeze, with the old standard diving dress. (This can not happen with scuba or where there is no rigid pressure-tight helmet) | In severe cases much of the diver's body could be mangled and compacted inside the helmet; however, this requires substantial pressure difference, or by a sudden considerable increase in depth, as when the diver falls off a cliff or wreck and descends faster than the air supply can keep up with the pressure increase. | A non-return valve in the air supply line to the helmet failing (or absent on the earliest models of this type of diving suit), accompanied by a failure of the air compressor (on the surface) to pump enough air into the suit for the gas pressure inside the suit to remain equal to the outside pressure of the water, or a burst air supply hose. | Appropriate maintenance and daily pre-use testing of non-return valves. |
A sudden large increase in ambient pressure due to sudden depth increase, when the air supply can not compensate fast enough to prevent compression of the air in the suit. |
| ||
Tooth squeeze[34] | Toothache, most often affects divers with preexisting pathology in the oral cavity.[35] | Any gas space inside a tooth due to decay or poor quality fillings or caps may allow tissue inside the tooth to be squeezed into the gap causing pain. | Tooth squeeze may be avoided by ensuring good dental hygiene and that all fillings and caps are free of air spaces. |
Suit compression. | Loss of buoyancy may lead to:
|
Buouyancy loss due to compression of foam neoprene wet or drysuit material. |
|
Pressure changes during ascent
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Lung overpressure: Pressure in lungs exceeds ambient pressure. | Pulmonary barotrauma (Lung overexpansion injury)—rupture of lung tissue allowing air to enter tissues, blood vessels, or spaces between or surrounding organs:
|
Failing to maintain an open airway to release expanding air while ascending. | Divers should not hold their breath while ascending after diving with breathing apparatus: |
Sinus overpressure. | Sinus overpressure injury is commonly restricted to rupture of mucous membrane and small blood vessels, but can be more serious and involve bone damage. | Blockage of the sinus's duct, preventing trapped air in a sinus from equalising with the pharanx. |
|
Middle ear overpressure | Injury (reversed ear) of eardrum stretching or bursting outwards due to expansion of air in the middle ear. | Blocked Eustachian tube fails to allow pressure to equalise middle ear with the upper airway. | |
Overpressure within a cavity in a tooth, usually under a filling or cap. | Tooth squeeze/Toothache, may affect divers with preexisting pathology in the oral cavity.
|
Gas may find its way unto a cavity in the tooth or under a filling or cap during a dive and become trapped. During ascent, this gas will exert pressure inside the tooth. | Good dental hygiene, and maintenance of dental repairs to prevent or remove potential gas traps. |
Suit and BC expansion | Loss of buoyancy control—uncontrolled ascent. | Expansion of neoprene suit material, gas content of dry suits and buoyancy compensators increasing buoyancy of the diver. |
|
Breathing gases at high ambient pressure
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Medium to long term exposure to high partial pressures (>c1.3 bar) of inert gas (usually N2 or He) in the breathing gas. | Decompression sickness ("the bends"): Injury due to gas bubbles expanding in the tissues and causing damage, or gas bubbles in the arterial circulation causing emboli and cutting off blood supply to tissues downstream of the blockage. |
Gas dissolved in tissues under pressure during the dive according to Henry's Law coming out of solution and forming bubbles if the ascent and decompression is too fast to allow safe elimination of the gas by diffusion into the capillaries and transport to the lungs where it can diffuse into the respiratory gas. Although rare, decompression sickness is possible in free-diving (breathhold diving) when many deep dives are done in succession. (See also taravana). |
|
Short term (immediate onset) exposure to high partial pressure (>c2.4 bar) of nitrogen in the breathing gas: | Nitrogen narcosis:
|
A high partial pressure of nitrogen in the nerve tissues. (other gases may also have narcotic effect, to varying degrees).
|
|
Short term (minutes to hours) exposure to high partial pressure (>c1.6 bar) of oxygen in the breathing gas. | Acute oxygen toxicity:
|
Breathing gas with too high a partial pressure of oxygen, risk becomes significant at partial pressures exceeding 1.6 bar (partial pressure depends upon proportion of oxygen in the breathing gas, and depth). |
|
Long term (hours to days) exposure to moderately raised partial pressure (>0.5 bar) of oxygen in the breathing gas. | Chronic oxygen toxicity:
|
Breathing gas at too high a partial pressure of oxygen, Risk is significant at a partial pressure in excess of 0.5 atmospheres pressure for long periods and increases with higher partial pressure even for shorter exposures. |
|
Exposure to a high partial pressure(>15 bar) of helium in the breathing gas. | High Pressure Nervous Syndrome (HPNS):
|
HPNS has two components:
|
|
The specific diving environment
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Exposure to cold water during a dive, and cold environment before or after a dive, wind chill. | Hypothermia: Reduced core temperature, shivering, loss of strength, reduced level of conscuousness, loss of consciousness and eventually death. | Loss of body heat to the water or other surroundings. Water carries heat away far more effectively than air. Evaporative cooling on the surface is also an effective mechanism of heat loss, and can affect divers in wet diving suits while travelling on boats. |
|
Nonfreezing Cold Injuries (NFCI). | Exposure of the extremities in water temperatures below 12 °C (53.6 °F). | Hand and Foot Temperature Limits to avoid NFCI:[46]
Protection in order of effectiveness:
| |
Frostbite | Exposure of inadequately perfused skin and extremities to temperatures below freezing. | Prevent excessibe heat loss of body parts at risk:
| |
Muscular cramps |
|
Better insulation and/or suit fit. | |
Hard corals. | Coral cuts—Infected lacerations of the skin. | Sharp coral skeleton edges lacerating or abrading exposed skin, contaminating the wound with coral tissue and pathogenic microorganisms. |
|
Sharp edges of rock, metal, etc. | Lacerations and abrasions of the skin, possibly deeper wounds. | Contact with sharp edges. |
|
Stinging hydroids | Stinging skin rash, local swelling and inflammation. | Contact of bare skin with fire coral. |
|
Stinging jellyfish | Stinging skin rash, local swelling and inflammation, sometimes extremely painful, occasionally dangerous or even fatal | Some species of jellyfish (free swimming cnidaria) have stinging cells that are toxic to humans, and will inject venom on contact with the skin. |
|
Stingrays | A deep puncture or laceration that leaves venom in the wound. | Defensive reaction of a sting ray when disturbed or threatened, by lashing out with the venomous spine on the tail. |
|
Tropical reef environment | Reef rash: General or localised stinging or inflammation of the skin. may include allergic reactions. | A generic catch-all term that refers to the various cuts, scrapes, bruises and skin conditions that result from diving in tropical waters. This may include sunburn, mild jellyfish stings, sea lice bites, fire coral inflammation and other skin injuries that a diver may get on exposed skin. | A full-body exposure suit can prevent direct skin to environment contact. |
Fish and invertebrates with venomous spines. | Puncture wounds with venom injection. Often extremely painful and may be fatal in rare cases. | Lionfish, stonefish, crown of thorns starfish, some sea urchins in warm seas. |
|
Venomous octopus | Local envenomation at site of bite wound. Extremely painful and may result in death. | The Blue ringed octopus may on rare occasions bite a diver. |
|
Sharks | Lacerations by shark teeth can involve deep wounds, loss of tissue and amputation, with major blood loss. In extreme cases death may result. | Attack or investigation by shark with bites. Risk is location, conditions, and species dependent. |
|
Crocodiles | Lacerations and punctures by teeth, brute force tearing of tissues. Possibility of drowning. | Risk factors are proximity or entry to water, and low light. Launching ranges are 4m forwards out of water and 2m above water surface. Running speed is up to 11 km/h.[47] |
|
Titan triggerfish | This tropical Indo-Pacific fish is very territorial during breeding season and will attack and bite divers. | Keep a lookout for the fish and move away if they act aggressively. | |
Very large groupers. | Bite wounds, bruising and crushing injuries. | The Giant grouper Epinephelus lanceolatus can grow very big in tropical waters, where protected from attack by sharks. There have been cases of very large groupers trying to swallow humans.[48][49][50][51][52] |
|
Electric shock | Electrical discharge that will startle and may stun the diver. | Defense machanism of Electric eel, in some South American fresh waters. |
|
Defense mechanism of Electric ray, in some tropical to warm temperate seas. |
| ||
It is said that some naval anti-frogman defences use electric shock. |
| ||
Powerful ultrasound | Exposure to ultrasound in excess of 120 dB may lead to hearing loss. Exposure in excess of 155 dB may produce heating effects that are harmful to the human body, and it has been calculated that exposures above 180 dB may lead to death. | It is said that some naval anti-frogman defences use powerful ultrasound. Also used for long-range communication with submarines. Most high power sonar is used for submarine detection and target acquisition. |
|
Water contaminated by infectious aquatic organisms | Weil's disease. | Leptospirosis infection (Weil's disease) is commonly transmitted to humans by allowing water that has been contaminated by animal urine to come in contact with unhealed breaks in the skin, the eyes, or with the mucous membranes. Outside of tropical areas, leptospirosis cases have a relatively distinct seasonality with most of them occurring in spring and autumn. |
|
Bilharzia (in some warm fresh water) | Schistosomiasis (bilharzia) is a parasitic disease caused by several species of trematodes or "flukes" of the genus Schistosoma. Snails serve as the intermediary agent between mammalian hosts. This disease is most commonly found in Asia, Africa, and South America, especially in areas where the water contains numerous freshwater snails, which may carry the parasite. The parasitic larvae enter through unprotected skin and further mature within organ tissues. | ||
(details to come) | Various bacteria found in sewage | ||
Chemically polluted water |
|
Water polluted by industrial waste outfalls or by natural sources. | |
Hydrogen sulfide | Hydrogen sulfide poisoning:
|
Hydrogen sulfide is associated with sour natural gas, crude oil, anoxic water conditions and sewers (more information needed). hydrogen sulfide is present in some lakes and caves and can also be absorbed through the skin. | |
Impact with boat or shoreline | Broken bones, bleeding, lacration wounds and other trauma |
| |
Abandonment at surface after a boat dive | Diver lost at sea on the surface after a dive, with risk of exposure, drowning and dehydration. |
|
|
Inability to return to shore or to exit the water. | Diver lost at sea after a shore dive. |
|
|
Silt | Sudden loss of underwater visibility (silt out), which can cause disorientation and a diver getting lost under an overhead. | Stirring up silt or other light loose material, either by natural water movement or by diver activity, often due to poor trim and finning skills. |
|
Entrapment hazards such as nets, lines, kelp, unstable structures or terrain, and confined spaces. | Diver trapped underwater and may run out of breathing gas and drown. Inappropriate response due to panic is possible. | Snagging on lines, nets, wrecks, debris or in caves.
|
|
Overhead environment (cave, wreck or ice, where direct ascent to the surface is obstructed) |
|
Getting lost in wrecks and caves or under ice where there is no direct route to the surface, often due to not using a distance line, or losing it in darkness or bad visibility, but sometimes due to the line breaking. |
|
Strong currents or surge |
|
|
|
Breaking waves (surf) |
|
|
|
Low visibility and darkness. (in conjunction with other hazards) | Inability to read instruments to monitor depth, time, ascent rate, decompression schedule, gas pressure, and to navigate. These are not dangerous in themselves, but may result in the diver getting lost, swimming into an entrapment hazard or under an overhang, violating a decompression obligation, or running out of breathing gas. | Lack of light or absorption of light by turbidity. |
|
High altitude | Increased risk of decompression sickness—Reduced ambient pressure can induce bubble formation or growth in saturated tissues. | Diving at altitude. |
|
Ascent to altitude after diving, including:
|
Surface interval appropriate to the planned change in altitude.[58] |
Pre-existing physiological and psychological conditions in the diver
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Heart disease |
|
Exertion beyond the capacity of the unhealthy heart. |
|
Epilepsy | Loss of consciousness and inability to remain alert and actively control activity. Likely to lead to drowning in Scuba divers. | Epileptic seizure. | Divers with a history of epilepsy are generally considered unfit for diving due to the unacceptable risk associated with an underwater seizure. |
Diabetes | (to be added) | (to be added) | (to be added) |
Asthma | Difficulty in breathing, particularly difficulty in exhaling adequately during ascent, with reduced physical work capacity, can seriously reduce ability to cope with a relatively minor difficulty and precipitate an emergency. | constriction of lung passages, increasing work of breathing. | (to be added) |
Trait anxiety | Panic, and associated sub-optimal coping behaviour. | Higher susceptibility to panic under high stress[59] |
|
Dehydration |
|
|
|
Fatigue | Reduced situational awareness, reduced ability to respond appropriately to emergencies | Lack of sleep, excessive exertion prior to dive. | To be added |
Compromised physical fitness |
|
Illness, lifestyle, lack of exercise. | Training and exercise, particularly swimming and finning exercise using diving equipment |
Diver behaviour and competence
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Inadequate learning of critical safety skills. | Inability to deal with minor incidents, which consequently may develop into major incidents. |
|
|
Inadequate practice of critical safety skills. | Inability to deal with minor incidents, which consequently may develop into major incidents. |
|
|
Overconfidence. | Diving in conditions beyond the diver's competence, with high risk of accident due to inability to deal with known environmental hazards. |
|
|
Inadequate strength or fitness for the conditions |
|
|
|
Peer pressure | Inability to deal with reasonably predictable incidents in a dive. |
|
|
Diving with an incompetent buddy | Injury or death while attempting to deal with a problem caused by the buddy. |
|
|
Overweighting | Difficulty in neutralising and controlling buoyancy.
|
Carrying more weight than needed. Recreational divers do not usually need more weight than is needed to remain slightly negative after using all the gas carried. Professional divers may need to be heavy at the bottom to provide stability to work. | Establish and use the correct amount of weight for the circumstances of the dive, taking into account:
|
Underweighting | Difficulty in neutralising and controlling buoyancy.
|
Not carrying sufficient weight. Divers need to be able to remain neutral at 3m depth at the end of a dive when the gas has been used up. | |
Diving under the influence of drugs or alcohol, or with a hangover |
|
Use of drugs that alter mental state or physiological responses to environmental conditions. | Avoid use of substances that are known or suspected to reduce the ability to respond appropriately to contingencies. |
Use of inappropriate equipment and/or configuration | Muscular cramps | Use of fins that are too large or stiff for the diver |
|
Lower back pain | Use of heavy weightbelts for scuba diving |
| |
More to be added (several items) | To be added | To be added |
Failure of diving equipment other than breathing apparatus
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
ballast weight loss | Possible inability to establish neutral buoyancy leading to uncontrolled ascent | Loss of diving weights. |
|
Water ingress into dry suit, and associated loss of air from dry suit. |
|
Catastrophic leak in dry suit:
|
|
Drysuit blow-up | Uncontrolled ascent with possible decompression problems | Inflation valve jammed open. |
|
Loss of propulsion, maneuvering control and mobility |
|
Loss of swimfin(s). Most often due to strap or strap connector failure. |
|
Loss of mask | Inability to focus underwater:
|
Failure of mask strap or buckle.
|
|
Buoyancy compensator blow-up. (uncontrolled inflation) | Uncontrolled ascent with possible decompression problems | Inflation valve stuck open. |
|
Uncontrollable loss of air from buoyancy compensator | Inability to achieve neutral or positive buoyancy, and potential difficulty or inability to make controlled ascent or to ascend at all. | Catastrophic leak in buoyancy compensator:
|
|
Blunt edged cutting tool | Inability to cut free from entanglement, possibly resulting in drowning. | Poor maintenance and pre-dive inspection procedures. |
|
Hazards of the dive task and special equipment
Hazards specific to special purpose underwater tools should be described in the article for the tool, but may be added here.
Hazard | Consequences | Cause | Avoidance and prevention |
---|---|---|---|
Carrying tools (in general) in midwater and at the surface. | Buoyancy problems due to weight of tools—Inability to achieve neutral buoyancy for ascent and positive buoyancy on surface.
|
Carrying an excessive weight of tools. |
|
Lifting bags | Uncontrolled ascent of diver. | Snagging on lift bag as it begins ascent, and being dragged up with it. | Precautions can be taken to reduce risk if diver snagging on bag or load. These include use of a rigid extension pipe to fill parachute style bags, allowing the diver to remain at a safe distance. |
Loss of breathing gas. | Using up breathing air to fill lift bag. |
| |
|
Runaway lift(bag):
|
|
See also
- Alternobaric vertigo
- Cave diving
- Deep water blackout for latent hypoxia on ascent from breath-hold dive
- Diver rescue
- Diver training
- Divers Alert Network
- Diving equipment
- Hazard
- Human factors in diving safety
- Risk assessment
- Rubicon Foundation
- Shallow water blackout for hypoxia resulting from hyperventilation prior to breath-hold dive
- Task loading
- Taravana
- Wreck diving
References
- ↑ Lansche, James M (1972). "Deaths During Skin and Scuba Diving in California in 1970". California Medicine 116 (6): 18–22. PMC 1518314. PMID 5031739.
- ↑ Ikeda, T; Ashida, H (2000). "Is recreational diving safe?". Undersea and Hyperbaric Medical Society. Retrieved 2009-08-08.
- ↑ 3.0 3.1 Lunetta, P. & Modell, J.H. (2005): Macropathological, Microscopical, and Laboratory Findings in Drowning Victims. In: Tsokos, M. (ed.): Forensic Pathology Reviews, Vol. 3. Humana Pres Inc.; Totowa, NJ, pp.: 4–77.
- ↑ Dueker CW, Brown SD (eds) (1999). "Near Drowning Workshop. 47th Undersea and Hyperbaric Medical Society Workshop". UHMS Publication Number WA292. (Undersea and Hyperbaric Medical Society): 63. Retrieved 2009-04-26.
- ↑ 5.0 5.1 Jablonski 2006, pp. 132–134
- ↑ Jablonski 2006, pp. 112–114
- ↑ Henderson, NC; Berry, WE; Eiber, RJ; Frink, DW (1970). "Investigation of scuba cylinder corrosion, Phase 1.". National Underwater Accident Data Center Technical Report Number 1 (University of Rhode Island). Retrieved 2013-04-02.
- ↑ Strauss, MB; Aksenov, IV; Lewis, AJ (2006). "Tank blackout [abstract]". Undersea and Hyperbaric Medicine. Retrieved 2013-04-02.
- ↑ 9.0 9.1 9.2 9.3 CDG Staff, (2005), Recreational Cave Diving Risk Assessment, Cave Diving Group of Great Britain, http://www.cavedivinggroup.org.uk/Articles/RiskAssessmentFinal050905.pdf
- ↑ Jablonski 2006, p. 101
- ↑ Jablonski 2006, p. 37
- ↑ Edmonds C (1998). "Drowning syndromes: the mechanism.". South Pacific Underwater Medicine Society Journal 28 (1). ISSN 0813-1988. OCLC 16986801. Retrieved 2008-07-04.
- ↑ Hardy KR, Thom SR (1994). "Pathophysiology and treatment of carbon monoxide poisoning". Journal of Toxicology. Clinical Toxicology 32 (6): 613–629. doi:10.3109/15563659409017973. PMID 7966524.
- ↑ Hampson NB, Hampson LA (March 2002). "Characteristics of headache associated with acute carbon monoxide poisoning". Headache 42 (3): 220–223. doi:10.1046/j.1526-4610.2002.02055.x. PMID 11903546.
- ↑ Choi IS (June 2001). "Carbon monoxide poisoning: systemic manifestations and complications" (Free full text). Journal of Korean Medical Science 16 (3): 253–261. PMC 3054741. PMID 11410684.
- ↑ Tritapepe L, Macchiarelli G, Rocco M, Scopinaro F, Schillaci O, Martuscelli E, Motta PM (April 1998). "Functional and ultrastructural evidence of myocardial stunning after acute carbon monoxide poisoning". Critical Care Medicine 26 (4): 797–801. doi:10.1097/00003246-199804000-00034. PMID 9559621.
- ↑ Weaver LK (March 2009). "Clinical practice. Carbon monoxide poisoning". The New England Journal of Medicine 360 (12): 1217–1225. doi:10.1056/NEJMcp0808891. PMID 19297574.
- ↑ Shochat, Guy N (17 February 2009). "Toxicity, Carbon Monoxide". emedicine. Retrieved 2009-04-27.
- ↑ 19.0 19.1 19.2 19.3 Millar IL, Mouldey PG (June 2008). "Compressed breathing air - the potential for evil from within". Diving and Hyperbaric Medicine : the Journal of the South Pacific Underwater Medicine Society 38 (2): 145–51. PMID 22692708. Retrieved 2013-04-02.
- ↑ Kizer KW, Golden JA (November 1987). "Lipoid pneumonitis in a commercial abalone diver". Undersea Biomedical Research 14 (6): 545–52. PMID 3686744. Retrieved 2013-04-02.
- ↑ Toxicity of Carbon Dioxide Gas Exposure, CO2 Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures By Daniel Friedman – InspectAPedia
- ↑ Davidson, Clive. 7 February 2003. "Marine Notice: Carbon Dioxide: Health Hazard". Australian Maritime Safety Authority.
- ↑ Stapczynski J. S, "Chapter 62. Respiratory Distress" (Chapter). Tintinalli JE, Kelen GD, Stapczynski JS, Ma OJ, Cline DM: Tintinalli's Emergency Medicine: A Comprehensive Study Guide, 6th Edition: http://www.accessmedicine.com/content.aspx?aID=591330.
- ↑ Morgan GE, Jr., Mikhail MS, Murray MJ, "Chapter 3. Breathing Systems" (Chapter). Morgan GE, Jr., Mikhail MS, Murray MJ: Clinical Anesthesiology, 4th Edition: http://www.accessmedicine.com/content.aspx?aID=886013.
- ↑ Lambertsen, C. J. (1971). "Carbon Dioxide Tolerance and Toxicity". Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center (Philadelphia, PA). IFEM Report No. 2–71. Retrieved 2008-06-10.
- ↑ Glatte Jr H. A., Motsay G. J., Welch B. E. (1967). "Carbon Dioxide Tolerance Studies". Brooks AFB, TX School of Aerospace Medicine Technical Report. SAM-TR-67-77. Retrieved 2008-06-10.
- ↑ Arieli R (2008). "The effect of over- or underfilling the soda lime canister on CO2 absorption in two closed-circuit oxygen rebreathers.". Undersea Hyperb Med 35 (3): 213–8. PMID 18619117. Retrieved 2013-10-25.
- ↑ Mitchell, Simon J; Bennett, Michael H; Bird, Nick; Doolette, David J; Hobbs, Gene W; Kay, Edward; Moon, Richard E; Neuman, Tom S; Vann, Richard D; Walker, Richard; Wyatt, HA (2012). "Recommendations for rescue of a submerged unresponsive compressed-gas diver". Undersea & Hyperbaric Medicine : Journal of the Undersea and Hyperbaric Medical Society, Inc 39 (6): 1099–108. PMID 23342767. Retrieved 2013-03-03.
- ↑ 29.0 29.1 29.2 USN Diving Manual 2008, Chpt. 3 pages 23–25
- ↑ 30.0 30.1 USN Diving Manual 2008, Chpt. 3 page 26
- ↑ 31.0 31.1 31.2 USN Diving Manual 2008, Chpt. 3 page 25
- ↑ 32.0 32.1 USN Diving Manual 2008, Chpt. 3 page 27
- ↑ 33.0 33.1 USN Diving Manual 2008, Chpt. 3 pages 26–27
- ↑ Zadik, Yehuda; Scott, Drucker (September 2011). "Diving dentistry: a review of the dental implications of scuba diving". Aust Dent J. 56 (3): 265–71. doi:10.1111/j.1834-7819.2011.01340.x. PMID 21884141.
- ↑ Zadik, Yehuda (April 2009). "Barodontalgia". J Endod 35 (4): 481–5. doi:10.1016/j.joen.2008.12.004. PMID 19345791.
- ↑ 36.0 36.1 Brown, Charles V. (1979). Samson RL, Miller JW, ed. "Emergency Ascent Training.". 15th Undersea and Hyperbaric Medical Society Workshop. UHMS Publication Number 32WS(EAT)10-31-79: 42. Retrieved 2008-08-07.
- ↑ Brubakk & Neuman 2003, p. 308
- ↑ Paton, William (1975). "Diver narcosis, from man to cell membrane". Journal of the South Pacific Underwater Medicine Society (first published at Oceans 2000 Conference) 5 (2). Retrieved 2008-12-23.
- ↑ Rostain, Jean C; Balon N (2006). "Recent neurochemical basis of inert gas narcosis and pressure effects". Undersea and Hyperbaric Medicine 33 (3): 197–204. PMID 16869533. Retrieved 2008-12-23.
- ↑ Brauer, R. W.; S. Dimov; X. Fructus; P. Fructus; A. Gosset; R. Naquet. (1968). "Syndrome neurologique et electrographique des hautes pressions". Rev Neurol (Paris) 121 (3): 264–5. PMID 5378824.
- ↑ 41.0 41.1 41.2 Bennett, Peter B; Rostain, Jean Claude (2003). "The High Pressure Nervous Syndrome". In Brubakk, Alf O; Neuman, Tom S. Bennett and Elliott's physiology and medicine of diving, 5th Rev ed. United States: Saunders. pp. 323–57. ISBN 0-7020-2571-2.
- ↑ Vigreux, J. (1970). "Contribution to the study of the neurological and mental reactions of the organism of the higher mammal to gaseous mixtures under pressure". MD Thesis (Toulouse University).
- ↑ Fife, W. P. (1979). "The use of Non-Explosive mixtures of hydrogen and oxygen for diving". Texas A&M University Sea Grant. TAMU-SG-79-201.
- ↑ Rostain, J. C.; Gardette-Chauffour, M. C.; Lemaire, C.; Naquet, R. (1988). "Effects of a H2-He-O2 mixture on the HPNS up to 450 msw". Undersea Biomedical Research 15 (4): 257–70. ISSN 0093-5387. OCLC 2068005. PMID 3212843. Retrieved 2008-04-07.
- ↑ 45.0 45.1 Steve Barsky, Dick Long and Bob Stinton, (1999), Dry suit diving, 3rd ed. Chpt 2, Hammerhead Press, Santa Barbara, CA. ISBN 0-9674305-0-X
- ↑ 46.0 46.1 Stinton, RT, (2006), Survey of Thermal Protection Strategies. In: Lang, MA and Smith, NE (eds.). Proceedings of Advanced Scientific Diving Workshop: February 23–24, 2006, Smithsonian Institution, Washington, DC. http://archive.rubicon-foundation.org/4658
- ↑ Britton, Adam. "Crocodilian Biology Database FAQ". Retrieved 2008-02-02.
- ↑ Alevizon, Bill (July 2000). "A Case for Regulation of the Feeding of Fishes and Other Marine Wildlife by Divers and Snorkelers". Reef Relief. Retrieved 2009-08-08.
- ↑ Allard, Evan T (2002-01-04). "Did fish feeding cause recent shark, grouper attacks?". Cyber Diver News Network. Retrieved 2009-08-08.
- ↑ "Goliath grouper attacks". Jacksonville.com (Florida Times-Union). 2005-06-19. Retrieved 2009-08-08.
- ↑ Sargent, Bill (2005-06-26). "Big Grouper Grabs Diver On Keys Reef". FloridaToday.com. Florida Museum of Natural History. Retrieved 2009-08-08.
- ↑ Arthur C. Clarke, Reefs of Taprobane, ISBN 0-7434-4502-3, page 138: 15 feet long, 4 feet side to side. in the sunken Admiralty floating dock in Trincomalee, Sri Lanka
- ↑ Barsky 2007, chpt 3
- ↑ Barsky 2007, chpt 4
- ↑ Odor perception and physiological response
- ↑ USEPA; Health and Environmental Effects Profile for Hydrogen Sulfide p. 118–8 (1980) ECAO-CIN-026A
- ↑ Zenz, C., O. B. Dickerson, E. P. Horvath. Occupational Medicine. 3rd ed. St. Louis, MO., 1994, p. 886
- ↑ 58.0 58.1 58.2 USN Diving Manual 2008, Chpt. 9 sections 13, 14
- ↑ Morgan, William P. (1995). "Anxiety and Panic in Recreational Scuba Divers". Sports Medicine 20 (6): 398–421. doi:10.2165/00007256-199520060-00005. PMID 8614760.
- ↑ Jablonski 2006, pp. 41–42 & 54–55
- ↑ The Cave Diving Group Manual"; Cave Diving Group, 2nd Revised edition, Feb 2008, ISBN 978-0-901031-04-4
- ↑ Sheldrake, Sean; Pollock, Neal W. "Alcohol and Diving". In: Steller D, Lobel L, eds. Diving for Science 2012. Proceedings of the American Academy of Underwater Sciences 31st Symposium. Dauphin Island, AL: AAUS; 2012. Retrieved 2013-03-06.
- ↑ Sterba, John A (1992). "Undergarments:Thermal conductivity (Wet vs Dry), Compressibility and absorbency". In: Proceedings of the DCIEM Diver Thermal Protection Workshop, 1989, DCIEM no. 92-10, R.Y. Nishi (ed), pp67-74, Defence and Civil Institute of Environmental Medicine, Canada. Retrieved 2013-03-08.
- ↑ Romet, T. T. (1992). "Thermal Insulation in various dry and flooded drysuit/pile undergarment combinations". In: Proceedings of the DCIEM Diver Thermal Protection Workshop, 1989, DCIEM no. 92–10, R.Y. Nishi (ed), pp. 75–80, Defence and Civil Institute of Environmental Medicine, Canada. Retrieved 2013-03-08.
- ↑ Jablonski 2006, p. 100
Sources
- US Navy (2008). US Navy Diving Manual, 6th revision. United States: US Naval Sea Systems Command. Retrieved 2008-06-15.
- Jablonski, Jarrod (2006). Doing it Right: The Fundamentals of Better Diving. Global Underwater Explorers. ISBN 0-9713267-0-3.
- Steven M. Barsky (2007). Diving in High-Risk Environments (4th ed.). Hammerhead Press, Ventura, CA. ISBN 978-0-9674305-7-7.
- NOAA Diving Manual (4th ed.). CD-ROM prepared and distributed by the National Technical Information Service (NTIS)in partnership with NOAA and Best Publishing Company.
Further reading
- Chung, J; Brugger, J; Curley, M; Wallick, M; Perkins, R; Regis, D; Latson, G (2011). "Health survey of U.S. Navy divers from 1960 to 1990: A first look". US Navy Experimental Diving Unit Technical Report 2011-11. Retrieved 2013-03-08.
- Edmonds, C; Thomas, R; McKenzie, B; Pennefather, J (2012). Diving Medicine for Scuba Divers (5th ed.). Retrieved 16 May 2013.
External links
|