Linnik's theorem

Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem on arithmetic progressions. It asserts that there exist positive c and L such that, if we denote p(a,d) the least prime in the arithmetic progression

a + nd,\

where n runs through the positive integers and a and d are any given positive coprime integers with 1 ≤ ad - 1, then:

 p(a,d) < c d^{L}. \;

The theorem is named after Yuri Vladimirovich Linnik, who proved it in 1944.[1][2] Although Linnik's proof showed c and L to be effectively computable, he provided no numerical values for them.

Properties

It is known that L ≤ 2 for almost all integers d.[3]

On the generalized Riemann hypothesis it can be shown that

 p(a,d) \leq (1+o(1))\varphi(d)^2 \ln^2 d \; ,

where \varphi is the totient function.[4]

It is also conjectured that:

 p(a,d) < d^2. \; [4]


Bounds for L

The constant L is called Linnik's constant [5] and the following table shows the progress that has been made on determining its size.

L ≤ Year of publication Author
10000 1957 Pan[6]
5448 1958 Pan
777 1965 Chen[7]
630 1971 Jutila
550 1970 Jutila[8]
168 1977 Chen[9]
80 1977 Jutila[10]
36 1977 Graham[11]
20 1981 Graham[12] (submitted before Chen's 1979 paper)
17 1979 Chen[13]
16 1986 Wang
13.5 1989 Chen and Liu[14][15]
8 1990 Wang[16]
5.5 1992 Heath-Brown[4]
5.2 2009 Xylouris[17]
5 2011 Xylouris[18]

Moreover, in Heath-Brown's result the constant c is effectively computable.

Notes

  1. Linnik, Yu. V. On the least prime in an arithmetic progression I. The basic theorem Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 139-178
  2. Linnik, Yu. V. On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 347-368
  3. E. Bombieri, J. B. Friedlander, H. Iwaniec. "Primes in Arithmetic Progressions to Large Moduli. III", Journal of the American Mathematical Society 2(2) (1989), pp. 215–224.
  4. 4.0 4.1 4.2 Heath-Brown, D. R. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64(3) (1992), pp. 265-338
  5. Guy, Richard K. (1994). Unsolved problems in number theory (2nd ed. ed.). Springer. p. 13. ISBN 0-387-94289-0.
  6. Pan Cheng Dong On the least prime in an arithmetical progression. Sci. Record (N.S.) 1 (1957) pp. 311-313
  7. Chen Jingrun On the least prime in an arithmetical progression. Sci. Sinica 14 (1965) pp. 1868-1871
  8. Jutila, M. A new estimate for Linnik's constant. Ann. Acad. Sci. Fenn. Ser. A I No. 471 (1970) 8 pp.
  9. Chen Jingrun On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions. Sci. Sinica 20 (1977), no. 5, pp. 529-562
  10. Jutila, M. On Linnik's constant. Math. Scand. 41 (1977), no. 1, pp. 45-62
  11. Applications of sieve methods Ph.D. Thesis, Univ. Michigan, Ann Arbor, Mich., 1977
  12. Graham, S. W. On Linnik's constant. Acta Arith. 39 (1981), no. 2, pp. 163-179
  13. Chen Jingrun On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II. Sci. Sinica 22 (1979), no. 8, pp. 859-889
  14. Chen Jingrun and Liu Jian Min On the least prime in an arithmetical progression. III. Sci. China Ser. A 32 (1989), no. 6, pp. 654-673
  15. Chen Jingrun and Liu Jian Min On the least prime in an arithmetical progression. IV. Sci. China Ser. A 32 (1989), no. 7, pp. 792-807
  16. Wang On the least prime in an arithmetical progression. Acta Mathematica Sinica, New Series 1991 Vol. 7 No. 3 pp. 279-288
  17. Triantafyllos Xylouris, On Linnik's constant (2009). arXiv:0906.2749
  18. Triantafyllos Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression (2011). Dr. rer. nat. dissertation.