Lehmann–Scheffé theorem
In statistics, the Lehmann–Scheffé theorem is prominent in mathematical statistics, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation.[1] The theorem states that any estimator which is unbiased for a given unknown quantity and which is based on only a complete, sufficient statistic (and on no other data-derived values) is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.[2][3]
If T is a complete sufficient statistic for θ and E(g(T)) = τ(θ) then g(T) is the minimum-variance unbiased estimator (MVUE) of τ(θ).
Statement
Let be a random sample from a distribution that has p.d.f (or p.m.f in the discrete case) where is a parameter in the parameter space. Suppose is a sufficient statistic for θ, and let be a complete family. If then is the unique MVUE of θ.
Proof
By the Rao–Blackwell theorem, if is an unbiased estimator of θ then defines an unbiased estimator of θ with the property that its variance is smaller than that of .
Now we show that this function is unique. Suppose is another candidate MVUE estimator of θ. Then again defines an unbiased estimator of θ with the property that its variance is smaller than that of . Then
Since is a complete family
and therefore the function is the unique function of Y that has a smaller variance than any unbiased estimator. We conclude that is the MVUE.
See also
- Basu's theorem
- Complete class theorem
- Rao–Blackwell theorem
References
- ↑ Casella, George (2001). Statistical Inference. Duxbury Press. p. 369. ISBN 0-534-24312-6.
- ↑ Lehmann, E. L.; Scheffé, H. (1950). "Completeness, similar regions, and unbiased estimation. I.". Sankhyā 10 (4): 305–340. JSTOR 25048038. MR 39201.
- ↑ Lehmann, E.L.; Scheffé, H. (1955). "Completeness, similar regions, and unbiased estimation. II.". Sankhyā 15 (3): 219–236. JSTOR 25048243. MR 72410.