Lambert cylindrical equal-area projection

Lambert cylindrical equal-area projection of the world.
Lambert cylindrical equal-area projection of the world, central meridian at 160°W to focus the map on the oceans.
Lambert cylindrical equal-area projection with Tissot's indicatrix of deformation.
How the Earth is projected onto a cylinder

In cartography, the Lambert cylindrical equal-area projection, or Lambert cylindrical projection, is a cylindrical, equal area map projection. It is a member of the cylindrical equal-area projection family. This projection is undistorted along the equator, which is its standard parallel, but distortion increases rapidly towards the poles. Like any cylindrical projection, it stretches parallels increasingly away from the equator. The poles accrue infinite distortion, becoming lines instead of points.

History

The projection is attributed to the Alsatian mathematician Johann Heinrich Lambert in 1772.[1]

Formulae

\begin{align}
  x &= \lambda - \lambda_0\\
  y &= \sin \varphi
\end{align}

where \scriptstyle\varphi\, is the latitude, \scriptstyle\lambda\, is the longitude and \scriptstyle\lambda_0\, is the central meridian.[2]

See also

References

  1. Mulcahy, Karen. "Cylindrical Projections". City University of New York. Retrieved 2007-03-30.
  2. Map Projections – A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp. 76–85

External links