Lamb–Oseen vortex

In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.[1]

Vector plot of the Lamb-Oseen vortex

The mathematical model for the flow velocity in the circumferential \theta–direction in the Lamb–Oseen vortex is:

V_\theta(r,t) = \frac{\Gamma}{2\pi r} \left(1-\exp\left(-\frac{r^2}{r_c^2(t)}\right)\right),

with

The radial velocity is equal to zero.

An alternative definition is to use the peak tangential velocity of the vortex rather than the total circulation

V_\theta\left( r \right) =
                        V_{\theta \max} \left( 1 + \frac{1}{2\alpha} \right)
                        \frac{r_\max}{r}
                        \left[ 1 - \exp \left( - \alpha \frac{r^2}{r_\max^2} \right)
                        \right],

where r_\max (t)=\sqrt{\alpha} r_c(t) is the radius at which v_\max is attained, and the number α = 1.25643, see Devenport et al.[2]

The pressure field simply ensures the vortex rotates in the circumferential direction, providing the centripetal force

 {\partial p \over \partial r} = \rho {v^2 \over r},

where ρ is the constant density[3]


References

  1. Saffman, P. G.; Ablowitz, Mark J.; J. Hinch, E.; Ockendon, J. R.; Olver, Peter J. (1992). Vortex dynamics. Cambridge: Cambridge University Press. ISBN 0-521-47739-5. p. 253.
  2. W.J. Devenport, M.C. Rife, S.I. Liapis and G.J. Follin (1996). "The structure and development of a wing-tip vortex". Journal of Fluid Mechanics 312: 67–106. Bibcode:1996JFM...312...67D. doi:10.1017/S0022112096001929.
  3. G.K. Batchelor (1967). An Introduction to Fluid Dynamics. Cambridge University Press.