Krull's theorem
In mathematics, and more specifically in ring theory, Krull's theorem, named after Wolfgang Krull, asserts that a nonzero ring[1] has at least one maximal ideal. The theorem was proved in 1929 by Krull, who used transfinite induction. The theorem admits a simple proof using Zorn's lemma, and in fact is equivalent to Zorn's lemma, which in turn is equivalent to the axiom of choice.
Variants
- For noncommutative rings, the analogues for maximal left ideals and maximal right ideals also hold.
- For pseudo-rings, the theorem holds for regular ideals.
- A slightly stronger (but equivalent) result, which can be proved in a similar fashion, is as follows:
- Let R be a ring, and let I be a proper ideal of R. Then there is a maximal ideal of R containing I.
- This result implies the original theorem, by taking I to be the zero ideal (0). Conversely, applying the original theorem to R/I leads to this result.
- To prove the stronger result directly, consider the set S of all proper ideals of R containing I. The set S is nonempty since I ∈ S. Furthermore, for any chain T of S, the union of the ideals in T is an ideal J, and a union of ideals not containing 1 does not contain 1, so J ∈ S. By Zorn's lemma, S has a maximal element M. This M is a maximal ideal containing I.
Krull's Hauptidealsatz
Main article: Krull's principal ideal theorem
Another theorem commonly referred to as Krull's theorem:
- Let be a Noetherian ring and an element of which is neither a zero divisor nor a unit. Then every minimal prime ideal containing has height 1.
Notes
- ↑ In this article, rings have a 1.
References
- W. Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingungen, Mathematische Annalen 10 (1929), 729–744.