KCNC1

Potassium voltage-gated channel, Shaw-related subfamily, member 1
Identifiers
SymbolsKCNC1 ; KV3.1; KV4; NGK2
External IDsOMIM: 176258 MGI: 96667 HomoloGene: 68134 IUPHAR: 548 ChEMBL: 5529 GeneCards: KCNC1 Gene
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez374616502
EnsemblENSG00000129159ENSMUSG00000058975
UniProtP48547P15388
RefSeq (mRNA)NM_001112741NM_001112739
RefSeq (protein)NP_001106212NP_001106210
Location (UCSC)Chr 11:
17.76 – 17.8 Mb
Chr 7:
46.4 – 46.44 Mb
PubMed search

Potassium voltage-gated channel subfamily C member 1 is a protein that in humans is encoded by the KCNC1 gene.[1][2][3]

The Shaker gene family of Drosophila encodes components of voltage-gated potassium channels and comprises four subfamilies. Based on sequence similarity, this gene is similar to one of these subfamilies, namely the Shaw subfamily. The protein encoded by this gene belongs to the delayed rectifier class of channel proteins and is an integral membrane protein that mediates the voltage-dependent potassium ion permeability of excitable membranes.[3]

Expression pattern

Kv3.1 and Kv3.2 channels are prominently expressed in neurons that fire at high frequency. Kv3.1 channels are prominently expressed in brain (cerebellum > globus pallidus, subthalamic nucleus, substantia nigra > reticular thalamic nuclei, cortical and hippocampal interneurons > inferior colliculi, cochlear and vestibular nuclei), and in retinal ganglion cells.[4][5][6]

Physiological role

Kv3.1/Kv3.2 conductance is necessary and kinetically optimized for high-frequency action potential generation.[5][7] Kv3.1 channels are important for the high-firing frequency of auditory and fast-spiking GABAergic interneurons, retinal ganglion cells; regulation of action potential duration in presynaptic terminals.[4][6]

Pharmacological properties

Kv3.1 currents in heterologous systems are highly sensitive to external tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (IC50 values are 0.2 mM and 29 μM respectively).[5][6] This can be useful in identifying native channels.[5] The overlapping sensitivity of potassium current to both 0.5 mM TEA and 30 μM 4-AP strongly suggest an action on Kv3.1 subunits.[8]

Transcript variants

There are two transcript variants of Kv3.1 gene: Kv3.1a and Kv3.1b. Kv3.1 isoforms differ only in their C-terminal sequence.[9]

Clinical significance

A missense mutation c.959G>A (p.Arg320His) in KCNC1 causes progressive myoclonus epilepsy.[10]

See also

References

  1. Ried T, Rudy B, Vega-Saenz de Miera E, Lau D, Ward DC, Sen K (Apr 1993). "Localization of a highly conserved human potassium channel gene (NGK2-KV4; KCNC1) to chromosome 11p15". Genomics 15 (2): 405–11. doi:10.1006/geno.1993.1075. PMID 8449507.
  2. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (Dec 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol Rev 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104.
  3. 3.0 3.1 "Entrez Gene: KCNC1 potassium voltage-gated channel, Shaw-related subfamily, member 1".
  4. 4.0 4.1 Kolodin YO (2008-04-27). "Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat". Retrieved 2008-10-20.
  5. 5.0 5.1 5.2 5.3 Rudy B, McBain CJ (September 2001). "Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing". Trends in Neurosciences 24 (9): 517–26. doi:10.1016/S0166-2236(00)01892-0. PMID 11506885.
  6. 6.0 6.1 6.2 Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacological Reviews 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104.
  7. Lien CC, Jonas P (March 2003). "Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons". Journal of Neuroscience 23 (6): 2058–68. PMID 12657664.
  8. Dallas ML, Atkinson L, Milligan CJ, Morris NP, Lewis DI, Deuchars SA, Deuchars J (February 2005). "Localization and function of the Kv3.1b subunit in the rat medulla oblongata: focus on the nucleus tractus solitarii". The Journal of physiology 562 (Pt 3): 655–72. doi:10.1113/jphysiol.2004.073338. PMC 1665536. PMID 15528247.
  9. Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (April 1999). "Contributions of Kv3 channels to neuronal excitability". Annals of the New York Academy of Sciences 868 (1): 304–43. doi:10.1111/j.1749-6632.1999.tb11295.x. PMID 10414303.
  10. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R, Markkinen S, Heron SE, Hildebrand MS, Andermann E, Andermann F, Gambardella A, Tinuper P, Licchetta L, Scheffer IE, Criscuolo C, Filla A, Ferlazzo E, Ahmad J, Ahmad A, Baykan B, Said E, Topcu M, Riguzzi P, King MD, Ozkara C, Andrade DM, Engelsen BA, Crespel A, Lindenau M, Lohmann E, Saletti V, Massano J, Privitera M, Espay AJ, Kauffmann B, Duchowny M, Møller RS, Straussberg R, Afawi Z, Ben-Zeev B, Samocha KE, Daly MJ, Petrou S, Lerche H, Palotie A, Lehesjoki AE. (2015). "A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy". Nature Genetics 47 (1): 39–46. doi:10.1038/ng.3144. PMID 25401298.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.