Isotopes of tellurium
There are 38 known isotopes and 17 nuclear isomers of tellurium (Te) with atomic masses that range from 105 to 142. These are listed in the table below.
Naturally occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be radioactive: 128Te and 130Te undergo double beta decay with half-lives of, respectively, 2.2×1024 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive)[1] and 7.9×1020 (790 quintillion) years. The longest-lived artificial radioisotope is 121Te with a half-life of nearly 19 days. Several isomers have longer half-lives, the longest being 121mTe with a half-life of 154 days.
The very-long-lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.
It has been claimed that electron capture of 123Te was observed, but the recent measurements of the same team have disproved this.[2] Tellurium-123's half life is longer than 9.2 × 1016 years, and probably much longer.[3]
124Te can be used as a starting material in the production of radionuclides by a cyclotron or other particle accelerators. Some common radionuclides that can be produced from tellurium-124 are iodine-123 and iodine-124.
The short-lived isotope 135Te (half-life 19 seconds) is produced as a fission product in nuclear reactors. It decays, via two beta decays, to 135Xe, the most powerful known neutron absorber, and the cause of the iodine pit phenomenon.
Tellurium is the lightest element observed to commonly undergo alpha decay, with isotopes 106Te to 110Te being seen to undergo this mode of decay; some lighter elements have isotopes with alpha decay as a rare branch.
Tellurium's standard atomic mass is: 127.60(3) u.
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life[n 1] | decay mode(s)[4][n 2] |
daughter isotope(s)[n 3] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
105Te | 52 | 53 | 104.94364(54)# | 1 µs# | 5/2+# | ||||
106Te | 52 | 54 | 105.93750(14) | 70(20) µs [70(+20-10) µs] |
α | 102Sn | 0+ | ||
107Te | 52 | 55 | 106.93501(32)# | 3.1(1) ms | α (70%) | 103Sn | 5/2+# | ||
β+ (30%) | 107Sb | ||||||||
108Te | 52 | 56 | 107.92944(11) | 2.1(1) s | β+ (51%) | 108Sb | 0+ | ||
α (49%) | 104Sn | ||||||||
β+, p (2.4%) | 107Sn | ||||||||
β+, α (.065%) | 104In | ||||||||
109Te | 52 | 57 | 108.92742(7) | 4.6(3) s | β+ (86.99%) | 109Sb | (5/2+) | ||
β+, p (9.4%) | 108Sn | ||||||||
α (7.9%) | 105Sn | ||||||||
β+, α (.005%) | 105In | ||||||||
110Te | 52 | 58 | 109.92241(6) | 18.6(8) s | β+ (99.99%) | 110Sb | 0+ | ||
β+, p (.003%) | 109Sn | ||||||||
111Te | 52 | 59 | 110.92111(8) | 19.3(4) s | β+ | 111Sb | (5/2)+# | ||
β+, p (rare) | 110Sn | ||||||||
112Te | 52 | 60 | 111.91701(18) | 2.0(2) min | β+ | 112Sb | 0+ | ||
113Te | 52 | 61 | 112.91589(3) | 1.7(2) min | β+ | 113Sb | (7/2+) | ||
114Te | 52 | 62 | 113.91209(3) | 15.2(7) min | β+ | 114Sb | 0+ | ||
115Te | 52 | 63 | 114.91190(3) | 5.8(2) min | β+ | 115Sb | 7/2+ | ||
115m1Te | 10(7) keV | 6.7(4) min | β+ | 115Sb | (1/2)+ | ||||
IT | 115Te | ||||||||
115m2Te | 280.05(20) keV | 7.5(2) µs | 11/2- | ||||||
116Te | 52 | 64 | 115.90846(3) | 2.49(4) h | β+ | 116Sb | 0+ | ||
117Te | 52 | 65 | 116.908645(14) | 62(2) min | β+ | 117Sb | 1/2+ | ||
117mTe | 296.1(5) keV | 103(3) ms | IT | 117Te | (11/2-) | ||||
118Te | 52 | 66 | 117.905828(16) | 6.00(2) d | EC | 118Sb | 0+ | ||
119Te | 52 | 67 | 118.906404(9) | 16.05(5) h | β+ | 119Sb | 1/2+ | ||
119mTe | 260.96(5) keV | 4.70(4) d | β+ (99.99%) | 119Sb | 11/2- | ||||
IT (.008%) | 119Te | ||||||||
120Te | 52 | 68 | 119.90402(1) | Observationally Stable[n 4] | 0+ | 9(1)×10−4 | |||
121Te | 52 | 69 | 120.904936(28) | 19.16(5) d | β+ | 121Sb | 1/2+ | ||
121mTe | 293.991(22) keV | 154(7) d | IT (88.6%) | 121Te | 11/2- | ||||
β+ (11.4%) | 121Sb | ||||||||
122Te | 52 | 70 | 121.9030439(16) | Stable[n 5] | 0+ | 0.0255(12) | |||
123Te | 52 | 71 | 122.9042700(16) | Observationally Stable[n 6] | 1/2+ | 0.0089(3) | |||
123mTe | 247.47(4) keV | 119.2(1) d | IT | 123Te | 11/2- | ||||
124Te | 52 | 72 | 123.9028179(16) | Stable[n 5] | 0+ | 0.0474(14) | |||
125Te[n 7] | 52 | 73 | 124.9044307(16) | Stable[n 5] | 1/2+ | 0.0707(15) | |||
125mTe | 144.772(9) keV | 57.40(15) d | IT | 125Te | 11/2- | ||||
126Te | 52 | 74 | 125.9033117(16) | Stable[n 5] | 0+ | 0.1884(25) | |||
127Te[n 7] | 52 | 75 | 126.9052263(16) | 9.35(7) h | β− | 127I | 3/2+ | ||
127mTe | 88.26(8) keV | 109(2) d | IT (97.6%) | 127Te | 11/2- | ||||
β− (2.4%) | 127I | ||||||||
128Te[n 7][n 8] | 52 | 76 | 127.9044631(19) | 2.2(3)×1024 a[n 9] | β−β− | 128Xe | 0+ | 0.3174(8) | |
128mTe | 2790.7(4) keV | 370(30) ns | 10+ | ||||||
129Te[n 7] | 52 | 77 | 128.9065982(19) | 69.6(3) min | β− | 129I | 3/2+ | ||
129mTe | 105.50(5) keV | 33.6(1) d | 11/2- | ||||||
130Te[n 7][n 8] | 52 | 78 | 129.9062244(21) | 790(100)×1018 a | β−β− | 130Xe | 0+ | 0.3408(62) | |
130m1Te | 2146.41(4) keV | 115(8) ns | (7)- | ||||||
130m2Te | 2661(7) keV | 1.90(8) µs | (10+) | ||||||
130m3Te | 4375.4(18) keV | 261(33) ns | |||||||
131Te[n 7] | 52 | 79 | 130.9085239(21) | 25.0(1) min | β− | 131I | 3/2+ | ||
131mTe | 182.250(20) keV | 30(2) h | β− (77.8%) | 131I | 11/2- | ||||
IT (22.2%) | 131Te | ||||||||
132Te[n 7] | 52 | 80 | 131.908553(7) | 3.204(13) d | β− | 132I | 0+ | ||
133Te | 52 | 81 | 132.910955(26) | 12.5(3) min | β− | 133I | (3/2+) | ||
133mTe | 334.26(4) keV | 55.4(4) min | β− (82.5%) | 133I | (11/2-) | ||||
IT (17.5%) | 133Te | ||||||||
134Te | 52 | 82 | 133.911369(11) | 41.8(8) min | β− | 134I | 0+ | ||
134mTe | 1691.34(16) keV | 164.1(9) ns | 6+ | ||||||
135Te[n 10] | 52 | 83 | 134.91645(10) | 19.0(2) s | β− | 135I | (7/2-) | ||
135mTe | 1554.88(17) keV | 510(20) ns | (19/2-) | ||||||
136Te | 52 | 84 | 135.92010(5) | 17.63(8) s | β− (98.7%) | 136I | 0+ | ||
β−, n (1.3%) | 135I | ||||||||
137Te | 52 | 85 | 136.92532(13) | 2.49(5) s | β− (97.01%) | 137I | 3/2-# | ||
β−, n (2.99%) | 136I | ||||||||
138Te | 52 | 86 | 137.92922(22)# | 1.4(4) s | β− (93.7%) | 138I | 0+ | ||
β−, n (6.3%) | 137I | ||||||||
139Te | 52 | 87 | 138.93473(43)# | 500 ms [>300 ns]# |
β− | 139I | 5/2-# | ||
β−, n | 138I | ||||||||
140Te | 52 | 88 | 139.93885(32)# | 300 ms [>300 ns]# |
β− | 140I | 0+ | ||
β−, n | 139I | ||||||||
141Te | 52 | 89 | 140.94465(43)# | 100 ms [>300 ns]# |
β− | 141I | 5/2-# | ||
β−, n | 140I | ||||||||
142Te | 52 | 90 | 141.94908(64)# | 50 ms [>300 ns]# |
β− | 142I | 0+ |
- ↑ Bold for isotopes with half-lives longer than the age of the universe (nearly stable)
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes
- ↑ Believed to undergo β+β+ decay to 120Sn with a half-life over 2.2×1016 years
- ↑ 5.0 5.1 5.2 5.3 Theoretically capable of spontaneous fission
- ↑ Believed to undergo β+ decay to 123Sb with a half-life over 9.2×1016 years
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Fission product
- ↑ 8.0 8.1 Primordial radionuclide
- ↑ Longest measured half-life of any nuclide
- ↑ Very short-lived fission product, responsible for the iodine pit as precursor of 135Xe via 135I
Notes
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.
References
- ↑ Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
- ↑ A. Alessandrello et al. New Limits on Naturally Occurring Electron Capture of 123Te. Phys. Rev. C 67 (2003) 014323.
- ↑ New Limits on Naturally Occurring Electron Capture of 123Te full paper on arXiv URL: DOI: 10.1103/PhysRevC.67.014323.
- ↑ http://www.nucleonica.net/unc.aspx
- Isotope masses from:
- G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties". Nuclear Physics A 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources.
- G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties". Nuclear Physics A 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005.
- N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Isotopes of antimony | Isotopes of tellurium | Isotopes of iodine |
Table of nuclides |
Isotopes of the chemical elements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 H |
2 He | ||||||||||||||||
3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne | ||||||||||
11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | ||||||||||
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
55 Cs |
56 Ba |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn | |
87 Fr |
88 Ra |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Uut |
114 Fl |
115 Uup |
116 Lv |
117 Uus |
118 Uuo | |
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu | |||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr | |||
|