Isaak Moiseevich Milin
Isaak Moiseevich Milin (Russian: Исаа́к Моисе́евич Ми́лин; February 16, 1919 - November 17, 1992) was a Russian mathematician who worked in the field of complex analysis, particularly to geometric function theory where he gave important contributions to the study of the coefficient problem for univalent and meromorphic functions.
Research work
He discovered Milin's area theorem and, jointly with Nikolai Lebedev, proved the Lebedev-Milin inequalities: he also stated the Milin conjecture that played an important role in the proof of the Bieberbach conjecture.
Selected works
- Milin, I. M. (1977) [1971], Univalent functions and orthonormal systems, Translations of Mathematical Monographs 49, Providence, R.I.: American Mathematical Society, pp. iv+202, ISBN 0-8218-1599-7, MR 0369684, Zbl 0342.30006 (Translation of the 1971 Russian edition, edited by P. L. Duren).
See also
Biographical references
- Aleksandrov, I. A.; Alenitsin, Yu. E.; Belyi, V. I.; Goryainov, V. V.; Grinshpan, A. Z.; Gutlyanskii, V. Ya.; Krushkal', S. L.; Matveev, N. M.; Milin, V. I.; Mityuk, I. P.; Nikitin, S. V.; Odinets, V. P.; Reshetnyak, Yu. G.; Shirokov, N. A.; Tamrazov, P. M. (1993), Исаак Моисеевич Милин (некролог), Uspekhi Matematicheskikh Nauk (in Russian) 48 (4(292)): 181–183, MR 1257886, translated in English as "Isaak Moiseevich Milin (obituary)", Russian Mathematical Surveys 48 (4), 1993: 181–183, doi:10.1070/RM1993v048n04ABEH001054, MR 1257886.
References
- Grinshpan, Arcadii Z. (1999), "The Bieberbach conjecture and Milin's functionals", The American Mathematical Monthly 106 (3): 203–214, doi:10.2307/2589676, JSTOR 2589676, MR 1682341
- Grinshpan, Arcadii Z. (2002), "Logarithmic Geometry, Exponentiation, and Coefficient Bounds in the Theory of Univalent Functions and Nonoverlapping Domains", in Kuhnau, Reiner, Geometric Function Theory, Handbook of Complex Analysis, Volume 1, Amsterdam: North-Holland, pp. 273–332, ISBN 0-444-82845-1, MR 1966197, Zbl 1083.30017.
- Hayman, W. K. (1994) [1958], Multivalent functions, Cambridge Tracts on Mathematics 110 (Second ed.), Cambridge: Cambridge University Press, pp. xii+263, ISBN 0-521-46026-3, MR 1310776, Zbl 0904.30001.
- Kuhnau, Reiner, ed. (2002), Geometric Function Theory, Handbook of Complex Analysis, Volume 1, Amsterdam: North-Holland, pp. xii+536, ISBN 0-444-82845-1, MR 1966187, Zbl 1057.30001.