Iron meteorite

Iron meteorite
 Type 

Tamentit Iron Meteorite, found in 1864 in the Sahara,[1] weight about 500 kg. On display at Vulcania park in France.
Compositional type Iron
Parent body >50
Composition Fe, Ni & Co (>95%), Ni (5%-25%)
TKW ~500 short tons (450 t)

Widmanstätten pattern as seen on an etched and polished slice of the Seymchan meteorite. Scale unknown.

Iron meteorites are meteorites that consist overwhelmingly of an iron–nickel alloy known as meteoric iron that usually consists of two mineral phases: kamacite and taenite. Iron meteorites originate from planetary cores of planetesimals.[2]

The iron found in iron meteorites was one of the earliest sources of usable iron available to humans, before the development of smelting that signaled the beginning of the iron age.

Occurrence

Although they are fairly rare compared to the stony meteorites, comprising only about 5.7% of witnessed falls, iron meteorites have historically been heavily over-represented in meteorite collections.[3] This is due to several factors:

Because they are also denser than stony meteorites, iron meteorites also account for almost 90% of the mass of all known meteorites, about 500 tons.[4] All the largest known meteorites are of this type, including the largest—the Hoba meteorite.

Origin

Iron meteorites have been linked to M-type asteroids because both have similar spectral characteristics in the visible and near-infrared. Iron meteorites are thought to be the fragments of the cores of larger ancient asteroids that have been shattered by impacts. The heat released from the radioactive decay of the short-lived nuclides 26Al and 60Fe is considered as a plausible cause for the melting and differentiation of their parent bodies in the early Solar System.[5][6] The IIE chemical class may be a notable exception, in that they probably originate from the crust of S-type asteroid 6 Hebe.

Chemical and isotope analysis indicates that at least about 50 distinct parent bodies were involved. This implies that there were once at least this many large, differentiated, asteroids in the asteroid belt many more than today.

Composition

The overwhelming bulk of these meteorites consists of the FeNi-alloys kamacite and taenite. Minor minerals, when occurring, often form rounded nodules of troilite or graphite, surrounded by schreibersite and cohenite. Schreibersite and troilite also occur as plate shaped inclusions, which show up on cut surfaces as cm-long and mm-thick lamellae. The troilite plates are called Reichenbach lamellae.[7]

The chemical composition is dominated by the elements Fe, Ni and Co, which make up more than 95%. Ni is always present; the concentration is nearly always higher than 5% and may be as high as about 25%.[8] A significant percentage of nickel can be used in the field to distinguish meteoritic irons from man-made iron products, which usually contain lower amounts of Ni, but it is not enough to prove meteoritic origin.

Use

For usage of the metal of iron meteorites, see Meteoric iron.

Iron meteorites were historically used for their meteoric iron, which was forged into cultural objects, tools or weapons. With the advent of smelting and the beginning of the iron age the importance of iron meteorites as a resource decreased, at least in those cultures that developed those techniques. The Inuit used the Cape York meteorite for a much longer time. Iron meteorites themselves were sometimes used unaltered as collectibles or even religious symbols (e.g. Clackamas worshiping the Willamette meteorite).[9] Today iron meteorites are prized collectibles for academic institutions and individuals. Some are also tourist attractions as in the case of the Hoba meteorite.

Classification

Two classifications are in use: the classic structural classification and the newer chemical classification.[10]

Structural classification

The older structural classification is based on the presence or absence of the Widmanstätten pattern, which can be assessed from the appearance of polished cross-sections that have been etched with acid. This is connected with the relative abundance of nickel to iron. The categories are:

Chemical classification

A newer chemical classification scheme based on the proportions of the trace elements Ga, Ge and Ir separates the iron meteorites into classes corresponding to distinct asteroid parent bodies.[13] This classification is based on diagrams that plot nickel content against different trace elements (e.g. Ga, Ge and Ir). The different iron meteorite groups appear as data point clusters.[2][14]

There were originally four of these groups designated by the Roman numerals I, II, III, IV. When more chemical data became available these were split, e.g. Group IV was split into IVA and IVB meteorites. Even later some groups got joined again when intermediate meteorites were discovered, e.g. IIIA and IIIB were combined into the IIIAB meteorites.[15]

In 2006 iron meteorites were classified into 13 groups (one for uncategorized irons):[2]

Additional groups and grouplets are discussed in the scientific literature:

Magmatic and primitive irons

The iron meteorites can be divided into two classes: magmatic irons and non magmatic or primitive irons.

Iron class Groups
Primitive iron meteorites IAB, IIE, Udei Station grouplet, Pitts grouplet, sLL, sLM, sLH, sHL, sHH
Magmatic iron meteorites IC, IIAB, IIC, IID, IIF, IIG, IIIAB, IIIE, IIIF, IVA, IVB

Stony–iron meteorites

There are also specific categories for mixed-composition meteorites, in which iron and 'stony' materials are combined.

Gallery

  1. ^ Chinga meteorite at Meteoritical Bulletin Database.

See also

References

  1. Tamentit meteorite at Meteoritical Bulletin Database.
  2. 2.0 2.1 2.2 M. K. Weisberg; T. J. McCoy, A. N. Krot (2006). "Systematics and Evaluation of Meteorite Classification". In D. S. Lauretta, H. Y. McSween, Jr. Meteorites and the early Solar System II. Tucson: University of Arizona Press. pp. 19–52. ISBN 978-0816525621. Retrieved 15 December 2012.
  3. Emiliani, Cesare (1992). "Planet earth: cosmology, geology, and the evolution of life and environment". Cambridge University Press. p. 152. ISBN 978-0-521-40949-0. |chapter= ignored (help)
  4. The Universal Book of Astronomy: From the Andromeda Galaxy to the Zone of Avoidance by David Darling (2003), p. 260.
  5. Sahijpal, S.; Soni, P.; Gagan, G. (2007). "Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources". Meteoritics & Planetary Science 42 (9): 1529–1548. Bibcode:2007M&PS...42.1529S. doi:10.1111/j.1945-5100.2007.tb00589.x.
  6. Gupta, G.; Sahijpal, S. (2010). "Differentiation of Vesta and the parent bodies of other achondrites". J. Geophys. Res. (Planets) 115 (E8). Bibcode:2010JGRE..11508001G. doi:10.1029/2009JE003525.
  7. J. G. Burke, Cosmic Debris: Meteorites in History. University of California Press, 1986.
  8. J. T. Wasson, Meteorites: Classification and Properties. Springer-Verlag, 1974.
  9. "Meteorites in History and Religion". Retrieved 13 December 2012.
  10. Vagn F. Buchwald, Handbook of Iron Meteorites. University of California Press, 1975.
  11. James H. Shirley,Rhodes Whitmore Fairbridge, Encyclopedia of planetary sciences, Springer, 1997. ISBN 978-0-412-06951-2
  12. Geochimica et cosmochimica acta, Volume 45, Ed. 9-12
  13. John T. Wasson: Meteorites. Springer-Verlag 1974.
  14. Scott, Edward R. D.; Wasson, John T. (1 January 1975). "Classification and properties of iron meteorites". Reviews of Geophysics 13 (4): 527. Bibcode:1975RvGSP..13..527S. doi:10.1029/RG013i004p00527.
  15. McSween, Harry Y. (1999). Meteorites and their parent planets (Sec. Ed. ed.). Cambridge: Cambridge Univ. Press. ISBN 978-0521587518.
  16. Wasson, John T.; Choe, Won-Hie (31 July 2009). "The IIG iron meteorites: Probable formation in the IIAB core". Geochimica et Cosmochimica Acta 73 (16): 4879–4890. Bibcode:2009GeCoA..73.4879W. doi:10.1016/j.gca.2009.05.062.

External links

Wikimedia Commons has media related to Iron meteorites.