Intrinsic immunity

Intrinsic immunity refers to a set of recently discovered cellular-based anti-viral defense mechanisms, notably genetically encoded proteins which specifically target eukaryotic retroviruses. Unlike adaptive and innate immunity effectors, intrinsic immune proteins are usually expressed at a constant level, allowing a viral infection to be halted quickly.

Background

Eukaryotic organisms have been exposed to viral infections for millions of years. The development of the innate and adaptive immune system reflects the evolutionary importance of fighting infection. Some viruses, however, have proven to be so deadly or refractory to conventional immune mechanisms that specific, genetically encoded cellular defense mechanisms have evolved to combat them. Intrinsic immunity comprises cellular proteins which are always active and have evolved to block infection by specific viruses or viral taxa.[1]

The recognition of intrinsic immunity as a potent anti-viral defense mechanism is a recent discovery and is not yet discussed in most immunology courses or texts. Though the extent of protection intrinsic immunity affords is still unknown, it is possible that intrinsic immunity may eventually be considered a third branch of the traditionally bipartite immune system.

Relationship to the immune system

Intrinsic Immunity combines aspects of the two traditional branches of the immune system - adaptive and innate immunity – but is mechanistically distinct. Innate cellular immunity recognizes viral infection using toll-like receptors (TLRs), or pattern recognition receptors, which sense Pathogen-associated molecular patterns (PAMPs), triggering the expression of nonspecific antiviral proteins. Intrinsic immune proteins, however, are specific both in virus recognition and their mechanism of viral attenuation. Like innate immunity, however, the intrinsic immune system does not respond differently upon repeat infection by the same pathogen. Also, like adaptive immunity, intrinsic immunity is specifically tailored to a single type or class of pathogens, notably retroviruses.

Unlike adaptive and innate immunity, which must sense the infection to be turned on (and can take weeks to become effective in the case of adaptive immunity) intrinsic immune proteins are constitutively expressed and ready to shut down infection immediately following viral entry. This is particularly important in retroviral infections since viral integration into the host genome occurs quickly after entry and reverse transcription and is largely irreversible.

Because the production of intrinsic immune mediating proteins cannot be increased during infection, these defenses can become saturated and ineffective if a cell is infected with a high level of virus.

Activities of canonical intrinsic immune proteins

Other intrinsic immune proteins have been discovered which block Murine leukemia virus (MLV), Herpes simplex virus (HSV), and Human Cytomegalovirus (HCMV). In many cases, such as that of APOBEC3G above, viruses have evolved mechanisms for disrupting the actions of these proteins. Another example is the cellular protein Daxx, which silences viral promoters, but is degraded by an active HCMV protein early in infection.[4]

References

  1. Bieniasz PD (November 2004). "Intrinsic immunity: a front-line defense against viral attack". Nat. Immunol. 5 (11): 1109–15. doi:10.1038/ni1125. PMID 15496950.
  2. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (February 2004). "The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys". Nature 427 (6977): 848–53. doi:10.1038/nature02343. PMID 14985764.
  3. Sheehy AM, Gaddis NC, Choi JD, Malim MH (August 2002). "Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein". Nature 418 (6898): 646–50. doi:10.1038/nature00939. PMID 12167863.
  4. Saffert RT, Kalejta RF (April 2006). "Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression". J. Virol. 80 (8): 3863–71. doi:10.1128/JVI.80.8.3863-3871.2006. PMC 1440479. PMID 16571803.