Interplanetary dust cloud

The interplanetary dust cloud is cosmic dust (small particles floating in space) which pervades the space between planets in the Solar System and in other planetary systems. It has been studied for many years in order to understand its nature, origin, and relationship to larger bodies.

In the Solar System, the interplanetary dust particles not only scatter solar light (called the "zodiacal light", which is confined to the ecliptic plane), but also produce thermal emission, which is the most prominent feature of the night-sky light in the 5-50 micrometer wavelength domain (Levasseur-Regourd, A.C. 1996). The grains characterizing the infrared emission near the earth's orbit have typical sizes of 10-100 micrometers (Backman, D., 1997). The total mass of the interplanetary dust cloud is about the mass of an asteroid of radius 15 km (with density of about 2.5 g/cm3).

Sources of interplanetary dust

The sources of interplanetary dust particles (IDPs) include at least: asteroid collisions, cometary activity and collisions in the inner Solar System, Kuiper Belt collisions, and interstellar medium grains (Backman, D., 1997). Indeed, one of the longest-standing controversies debated in the interplanetary dust community revolves around the relative contributions to the interplanetary dust cloud from asteroid collisions and cometary activity.

Dust particle life cycle

The main physical processes "affecting" (destruction or expulsion mechanisms) interplanetary dust particles are: expulsion by radiation pressure, inward Poynting-Robertson (PR) radiation drag, solar wind pressure (with significant electromagnetic effects), sublimation, mutual collisions, and the dynamical effects of planets (Backman, D., 1997).

The lifetimes of these dust particles are very short compared to the lifetime of the Solar System. If one finds grains around a star that is older than about 100,000,000 years, then the grains must have been from recently released fragments of larger objects, i.e. they cannot be leftover grains from the protoplanetary disk (Backman, private communication). Therefore, the grains would be "later-generation" dust. The zodiacal dust in the Solar System is 99.9% later-generation dust and 0.1% intruding interstellar medium dust. All primordial grains from the Solar System's formation were removed long ago.

Particles which are affected primarily by radiation pressure are known as beta meteoroids. They are generally less than 1.4 x 10−12 g and are pushed outward from the Sun into interstellar space.[1]

Interplanetary dust structures

The interplanetary dust cloud has a complex structure (Reach, W., 1997). Apart from a background density, this includes:

Collecting interplanetary dust on Earth

In 1951, Fred Whipple predicted that micrometeorites smaller than 100 micrometers in diameter might be decelerated on impact with the Earth's upper atmosphere without melting.[2] The modern era of laboratory study of these particles began with the stratospheric collection flights of D. E. Brownlee and collaborators in the 1970s using balloons and then U-2 aircraft.[3]

Although some of the particles found were similar to the material in present day meteorite collections, the nanoporous nature and unequilibrated cosmic-average composition of other particles suggested that they began as fine-grained aggregates of nonvolatile building blocks and cometary ice.[4] The interplanetary nature of these particles was later verified by noble gas[5] and solar flare track[6] observations.

In that context a program for atmospheric collection and curation of these particles was developed at Johnson Space Center in Texas.[7] This stratospheric micrometeorite collection, along with presolar grains from meteorites, are unique sources of extraterrestrial material (not to mention being small astronomical objects in their own right) available for study in laboratories today.

See also

References

See

Footnotes

  1. http://www.gps.caltech.edu/genesis/DocumentN.html#BeMe
  2. Whipple F. L. (1950). "The Theory of Micro-Meteorites: Part I. In an Isothermal Atmosphere". Proc. Nat. Acad. Sci. 36 (12): 687–695. Bibcode:1950PNAS...36..687W. doi:10.1073/pnas.36.12.687. PMC 1063272. PMID 16578350.
  3. D. E. Brownlee (1978) Interplanetary dust: Possible implications for comets and presolar interstellar grains, in Protostars and Planets (ed. T. Gehrels, U. Arizona Press, Tucson) pp. 134-150
  4. P. Fraundorf, D. E. Brownlee, and R. M. Walker (1982) Laboratory studies of interplanetary dust, in Comets (ed. L. Wilkening, U. Arizona Press, Tucson) pp. 383-409.
  5. Hudson B., Flynn G. J., Fraundorf P., Hohenberg C. M., Shirck J. (1981). "Noble gases in stratospheric dust: Confirmation of extraterrestrial origin". Science 211 (4480): 383–386. Bibcode:1981Sci...211..383H. doi:10.1126/science.211.4480.383. PMID 17748271.
  6. Bradley J. P., Brownlee D. E., Fraundorf P. (1984). "Discovery of nuclear tracks in interplanetary dust". Science 226 (4681): 1432–1434. Bibcode:1984Sci...226.1432B. doi:10.1126/science.226.4681.1432. PMID 17788999.
  7. Johnson Space Center program - Cosmic Dust Lab