Interdependent networks

Not to be confused with Dependency network.

The study of interdependent networks is a subfield of network science dealing with phenomena caused by the interactions between complex networks. Though there may be a wide variety of interactions between networks, dependency focuses on the scenario in which the nodes in one network require support from nodes in another network.[1][2][3][4] [5] [6]

Motivation for the model

In nature, networks rarely appear in isolation. They are typically elements in larger systems and can have non-trivial effects on one and other. For example, infrastructure networks exhibit interdependency to a large degree. The power stations which form the nodes of the power grid require fuel delivered via a network of roads or pipes and are also controlled via the nodes of communications network. Though the transportation network does not depend on the power network to function, the communications network does. Thus the deactivation of a critical number of nodes in either the power network or the communication network can lead to a series of cascading failures across the system with potentially catastrophic repercussions. If the two networks were treated in isolation, this important feedback effect would not be seen and predictions of network robustness would be greatly overestimated.

Dependency links

Links in a standard network represent connectivity, providing information about how one node can be reached from another. Dependency links represent a need for support from one node to another. This relationship is often, though not necessarily, mutual and thus the links can be directed or undirected. Crucially, a node loses its ability to function as soon as the node it is dependent on ceases to function while it may not be so severely effected by losing a node it is connected to.

In percolation theory, a node is considered active as long as it is connected to the giant component. The introduction of dependency links adds another condition: that the node that it depends on is also active.

Dependency can be defined between different networks[1] and also within the same network.[7]

Percolation properties and phase transitions

Interdependent networks have markedly different percolation properties than single-networks.

If a single network is subjected to random attack 1-p, the largest connected component decreases continuously with a divergence of its derivative \frac{dP^{\infty}}{dp} at the percolation threshold p_c, a second-order phase transition. This result is established for ER networks, lattices and other standard topologies.

However, when multiple networks are interdependent, cascading failures emerge due to the positive feedback caused by dependency links. This family of processes causes a discontinuous or first order phase transition. This has been observed for random networks as well as lattices.[7] Furthermore, for embedded interdependent networks the transition is particularly precipitous without even a critical exponent for p>p_c.[8]

Surprisingly, it has been shown that—contrary to the results for single networks—interdependent random networks with broader degree distributions are more vulnerable than those with narrow degree distributions. The high degree which is an asset in single networks can be a liability in interdependent networks. This is because the hubs which increase the robustness in single networks can be dependent on vulnerable low-degree nodes. The removal of the low-degree node then removes the hub and all of its links.[1][3]

Dynamics of cascading failure

A typical cascading failure in a system of interdependent networks can be described as follows:[1] We take two networks A and B with N nodes and a given topology . Each node A_i in A relies on a critical resource provided by a node B_i in B and vice versa. If A_i stops functioning, B_i will also stop functioning and vice versa. The failure is triggered by the removal of a fraction 1-p of nodes from A along with the links in A which were attached to each of those nodes. Since every node in B depends on a node in A, this causes the removal of the same fraction 1-p of nodes in B. In network theory, we assume that only nodes which are a part of the largest connected component can continue to function. Since the arrangement of links in A and B are different, they fragment into different sets of connected components. The smaller components in A cease to function and when they do, they cause the same number of nodes (but in different locations) in B to cease to function as well. This process continues iteratively between the two networks until no more nodes are removed. This process leads to a percolation phase transition at a value p_c which is substantially larger than the value obtained for a single network.

Effect of network topology

In interdependent random networks in which a fraction q of the nodes in one network are dependent on another, it is found that there is a critical value q_c above which first-order phase transitions are possible.

In spatially embedded interdependent networks, a new kind of failure has been observed in which a relatively small failure can propagate through space and destroy an entire system of networks.[8]

Comparison to many-particle systems in physics

In statistical physics, phase transitions can only appear in many particle systems. Though phase transitions are well known in network science, in single networks they are second order only. With the introduction of internetwork dependency, first order transitions emerge. This is a new phenomenon and one with profound implications for systems engineering. Where system dissolution takes place after steady (if steep) degradation for second order transitions, the existence of a first order transition implies that the system can go from a relatively healthy state to complete collapse with no advance warning.

Examples of interdependent networks

See also

References

  1. 1.0 1.1 1.2 1.3 Buldyrev, Sergey V.; Parshani, Roni; Paul, Gerald; Stanley, H. Eugene; Havlin, Shlomo (2010). "Catastrophic cascade of failures in interdependent networks". Nature 464 (7291): 1025–1028. Bibcode:2010Natur.464.1025B. doi:10.1038/nature08932. ISSN 0028-0836. PMID 20393559.
  2. Vespignani, Alessandro (2010). "Complex networks: The fragility of interdependency". Nature 464 (7291): 984–985. doi:10.1038/464984a. ISSN 0028-0836. PMID 20393545.
  3. 3.0 3.1 Gao, Jianxi; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo (2011). "Networks formed from interdependent networks". Nature Physics 8 (1): 40–48. doi:10.1038/nphys2180. ISSN 1745-2473.
  4. Kenett, Dror Y.; Gao, Jianxi; Huang, Xuqing; Shao, Shuai; Vodenska, Irena; Buldyrev, Sergey V.; Paul, Gerald; Stanley, H. Eugene; Havlin, Shlomo (2014). "Network of Interdependent Networks: Overview of Theory and Applications". In D'Agostino, Gregorio; Scala, Antonio. Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems. Springer International Publishing. pp. 3–36. doi:10.1007/978-3-319-03518-5_1. ISBN 978-3-319-03517-8.
  5. Danziger, Michael M.; Bashan, Amir; Berezin, Yehiel; Shekhtman, Louis M.; Havlin, Shlomo (2014). "An Introduction to Interdependent Networks". 22nd International Conference, NDES 2014, Albena, Bulgaria, July 4-6, 2014. Proceedings 438: 189–202. doi:10.1007/978-3-319-08672-9_24. Retrieved 8 March 2015.
  6. Kivelä, Mikko; Arenas, Alex; Barthelemy, Marc; Gleeson, James P.; Moreno, Yamir; Porter, Mason A. (2014). "Multilayer networks". Journal of Complex Networks 2 (3): 203–271. doi:10.1093/comnet/cnu016. Retrieved 8 March 2015.
  7. 7.0 7.1 Parshani, R.; Buldyrev, S. V.; Havlin, S. (2010). "Critical effect of dependency groups on the function of networks". Proceedings of the National Academy of Sciences 108 (3): 1007–1010. Bibcode:2011PNAS..108.1007P. doi:10.1073/pnas.1008404108. ISSN 0027-8424.
  8. 8.0 8.1 Li, Wei; Bashan, Amir; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo (2012). "Cascading Failures in Interdependent Lattice Networks: The Critical Role of the Length of Dependency Links". Physical Review Letters 108 (22): 228702. Bibcode:2012PhRvL.108v8702L. doi:10.1103/PhysRevLett.108.228702. ISSN 0031-9007. PMID 23003664.
  9. Rinaldi, S.M.; Peerenboom, J.P.; Kelly, T.K. (2001). "Identifying, understanding, and analyzing critical infrastructure interdependencies". IEEE Control Systems Magazine 21 (6): 11–25. doi:10.1109/37.969131. ISSN 0272-1708.
  10. Parshani, R.; Rozenblat, C.; Ietri, D.; Ducruet, C.; Havlin, S. (2010). "Inter-similarity between coupled networks". EPL (Europhysics Letters) 92 (6): 68002. doi:10.1209/0295-5075/92/68002. ISSN 0295-5075.
  11. Gu, Chang-Gui; Zou, Sheng-Rong; Xu, Xiu-Lian; Qu, Yan-Qing; Jiang, Yu-Mei; He, Da Ren; Liu, Hong-Kun; Zhou, Tao (2011). "Onset of cooperation between layered networks". Physical Review E 84 (2). doi:10.1103/PhysRevE.84.026101. ISSN 1539-3755.
  12. Bashan, Amir; Bartsch, Ronny P.; Kantelhardt, Jan. W.; Havlin, Shlomo; Ivanov, Plamen Ch. (2012). "Network physiology reveals relations between network topology and physiological function". Nature Communications 3: 702. doi:10.1038/ncomms1705. ISSN 2041-1723. PMC 3518900. PMID 22426223.
  13. Huang, Xuqing; Vodenska, Irena; Havlin, Shlomo; Stanley, H. Eugene (2013). "Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation". Scientific Reports 3. doi:10.1038/srep01219. ISSN 2045-2322.
  14. Pocock, M. J. O.; Evans, D. M.; Memmott, J. (2012). "The Robustness and Restoration of a Network of Ecological Networks". Science 335 (6071): 973–977. doi:10.1126/science.1214915. ISSN 0036-8075. PMID 22363009.
  15. Donges, J. F.; Schultz, H. C. H.; Marwan, N.; Zou, Y.; Kurths, J. (2011). "Investigating the topology of interacting networks". The European Physical Journal B 84 (4): 635–651. doi:10.1140/epjb/e2011-10795-8. ISSN 1434-6028.