Information extraction

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video could be seen as information extraction.

Due to the difficulty of the problem, current approaches to IE focus on narrowly restricted domains. An example is the extraction from news wire reports of corporate mergers, such as denoted by the formal relation:

MergerBetween(company_1, company_2, date),

from an online news sentence such as:

"Yesterday, New York based Foo Inc. announced their acquisition of Bar Corp."

A broad goal of IE is to allow computation to be done on the previously unstructured data. A more specific goal is to allow logical reasoning to draw inferences based on the logical content of the input data. Structured data is semantically well-defined data from a chosen target domain, interpreted with respect to category and context.

History

Information extraction dates back to the late 1970s in the early days of NLP.[1] An early commercial system from the mid-1980s was JASPER built for Reuters by the Carnegie Group with the aim of providing real-time financial news to financial traders.[2]

Beginning in 1987, IE was spurred by a series of Message Understanding Conferences. MUC is a competition-based conference that focused on the following domains:

Considerable support came from the U.S. Defense Advanced Research Projects Agency (DARPA), who wished to automate mundane tasks performed by government analysts, such as scanning newspapers for possible links to terrorism.

Present significance

The present significance of IE pertains to the growing amount of information available in unstructured form. Tim Berners-Lee, inventor of the world wide web, refers to the existing Internet as the web of documents [3] and advocates that more of the content be made available as a web of data.[4] Until this transpires, the web largely consists of unstructured documents lacking semantic metadata. Knowledge contained within these documents can be made more accessible for machine processing by means of transformation into relational form, or by marking-up with XML tags. An intelligent agent monitoring a news data feed requires IE to transform unstructured data into something that can be reasoned with. A typical application of IE is to scan a set of documents written in a natural language and populate a database with the information extracted.[5]

Tasks and subtasks

Applying information extraction on text, is linked to the problem of text simplification in order to create a structured view of the information present in free text. The overall goal being to create a more easily machine-readable text to process the sentences. Typical subtasks of IE include:

Note this list is not exhaustive and that the exact meaning of IE activities is not commonly accepted and that many approaches combine multiple sub-tasks of IE in order to achieve a wider goal. Machine learning, statistical analysis and/or natural language processing are often used in IE.

IE on non-text documents is becoming an increasing topic in research and information extracted from multimedia documents can now be expressed in a high level structure as it is done on text. This naturally lead to the fusion of extracted information from multiple kind of documents and sources.

World Wide Web applications

IE has been the focus of the MUC conferences. The proliferation of the Web, however, intensified the need for developing IE systems that help people to cope with the enormous amount of data that is available online. Systems that perform IE from online text should meet the requirements of low cost, flexibility in development and easy adaptation to new domains. MUC systems fail to meet those criteria. Moreover, linguistic analysis performed for unstructured text does not exploit the HTML/XML tags and layout format that are available in online text. As a result, less linguistically intensive approaches have been developed for IE on the Web using wrappers, which are sets of highly accurate rules that extract a particular page's content. Manually developing wrappers has proved to be a time-consuming task, requiring a high level of expertise. Machine learning techniques, either supervised or unsupervised, have been used to induce such rules automatically.

Wrappers typically handle highly structured collections of web pages, such as product catalogs and telephone directories. They fail, however, when the text type is less structured, which is also common on the Web. Recent effort on adaptive information extraction motivates the development of IE systems that can handle different types of text, from well-structured to almost free text -where common wrappers fail- including mixed types. Such systems can exploit shallow natural language knowledge and thus can be also applied to less structured text.

Approaches

Three standard approaches are now widely accepted

Numerous other approaches exist for IE including hybrid approaches that combine some of the standard approaches previously listed.

Free or open source software and services

See also

Lists

References

  1. Andersen, Peggy M.; Hayes, Philip J.; Huettner, Alison K.; Schmandt, Linda M.; Nirenburg, Irene B.; Weinstein, Steven P. "Automatic Extraction of Facts from Press Releases to Generate News Stories". CiteSeerX: 10.1.1.14.7943.
  2. Cowie, Jim; Wilks, Yorick. "Information Extraction". CiteSeerX: 10.1.1.61.6480.
  3. "Linked Data - The Story So Far" (PDF).
  4. "Tim Berners-Lee on the next Web".
  5. R. K. Srihari, W. Li, C. Niu and T. Cornell,"InfoXtract: A Customizable Intermediate Level Information Extraction Engine",Journal of Natural Language Engineering, Cambridge U. Press , 14(1), 2008, pp.33-69.
  6. A.Zils, F.Pachet, O.Delerue and F. Gouyon, Automatic Extraction of Drum Tracks from Polyphonic Music Signals, Proceedings of WedelMusic, Darmstadt, Germany, 2002.
  7. Peng, F.; McCallum, A. (2006). "Information extraction from research papers using conditional random fields☆". Information Processing & Management 42 (4): 963. doi:10.1016/j.ipm.2005.09.002.
  8. Shimizu, Nobuyuki; Hass, Andrew (2006). "Extracting Frame-based Knowledge Representation from Route Instructions" (PDF).

External links

Enterprise Search