Hydrogen deuteride

Hydrogen deuteride
Names
IUPAC name
Hydrogen deuteride
Systematic IUPAC name
(2H)Dihydrogen
Identifiers
13983-20-5 Yes
ChEBI CHEBI:29237 Yes
ChemSpider 146609 Yes
EC number 237-773-0
Jmol-3D images Image
PubChem 167583
UN number 1049
Properties
H[2H]
Molar mass 3.02204 g mol−1
Melting point −259 °C (−434.2 °F; 14.1 K)
Boiling point −253 °C (−423.4 °F; 20.1 K)
Hazards
EU classification F+
R-phrases R12
S-phrases S16, S33, S36, S38
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g., sodium chloride Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
4
0
0
571 °C (1,060 °F; 844 K)
Related compounds
Related hydrogens
Deuterium

Hydrogen
Tritium

Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 Yes verify (what is: Yes/?)
Infobox references

Hydrogen deuteride is a diatomic molecule composed of the two isotopes of hydrogen: the majority isotope 1H protium and 2H deuterium. Its molecular formula is HD.

Natural abundance

Hydrogen deuteride is a minor component of naturally occurring molecular hydrogen. In particular, hydrogen deuteride is one of the minor but noticeable components of the atmospheres of all the giant planets, with abundances from about 30 ppm to about 200 ppm. HD has also been found in supernova remnants,[1] and other sources.

Occurrence of HD vs. H2 in gas giants
Planet HD H2
Jupiter ~0.003% 89.8% ±2.0%
Uranus ~0.007% 83.0% ±3.0%
Neptune ~0.019% 80.0% ±3.2%

Radio emission spectra

HD and H2 have very similar emission spectra, but the emission frequencies differ.[2]

The frequency of the astronomically important J = 1-0 rotational transition of HD at 2.7 THz has been measured with tunable FIR radiation with an accuracy of 150 kHz.[3]

References

  1. Neufeld, David A.; Hollenbach, David J.; Kaufman, Michael J.; Snell, Ronald L.; Melnick, Gary J.; Bergin, Edwin A.; Sonnentrucker, Paule (2007). "SpitzerSpectral Line Mapping of Supernova Remnants. I. Basic Data and Principal Component Analysis". The Astrophysical Journal 664 (2): 890. arXiv:0704.2179. Bibcode:2007ApJ...664..890N. doi:10.1086/518857.
  2. Quinn, W.; Baker, J.; Latourrette, J.; Ramsey, N. (1958). "Radio-Frequency Spectra of Hydrogen Deuteride in Strong Magnetic Fields". Phys. Rev. 112 (6): 1929. Bibcode:1958PhRv..112.1929Q. doi:10.1103/PhysRev.112.1929.
  3. Evenson, K. M.; Jennings, D. A.; Brown, J. M.; Zink, L. R.; Leopold, K. R. (1988). "Frequency measurement of the J = 1-0 rotational transition of HD". Astrophysical Journal 330: L135. Bibcode:1988ApJ...330L.135E&db_key=AST. doi:10.1086/185221.

Further reading