History of computing hardware (1960s–present)

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid state devices such as the transistor and later the integrated circuit. By 1959 discrete transistors were considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Computer main memory slowly moved away from magnetic core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size and power consumption of computer devices. Eventually the cost of integrated circuit devices became low enough that home computers and personal computers became widespread.

Third generation

The mass increase in the use of computers accelerated with 'Third Generation' computers. These generally relied on Jack Kilby's invention of the integrated circuit (or microchip), starting around 1965. However, the IBM System/360 used hybrid circuits, which were solid-state devices interconnected on a substrate with discrete wires.

The first integrated circuit was produced in September 1958 but computers using them didn't begin to appear until 1963. Some of their early uses were in embedded systems, notably used by NASA for the Apollo Guidance Computer, by the military in the LGM-30 Minuteman intercontinental ballistic missile, and in the Central Air Data Computer used for flight control in the US Navy's F-14A Tomcat fighter jet.

By 1971, the Illiac IV supercomputer, which was the fastest computer in the world for several years, used about a quarter-million small-scale ECL logic gate integrated circuits to make up sixty-four parallel data processors.[1]

While large mainframe computers such as the System/360 increased storage and processing abilities, the integrated circuit also allowed development of much smaller computers. The minicomputer was a significant innovation in the 1960s and 1970s. It brought computing power to more people, not only through more convenient physical size but also through broadening the computer vendor field. Digital Equipment Corporation became the number two computer company behind IBM with their popular PDP and VAX computer systems. Smaller, affordable hardware also brought about the development of important new operating systems like Unix.

In November 1966, Hewlett-Packard introduced the 2116A[2][3] minicomputer, one of the first commercial 16-bit computers. It used CTµL (Complementary Transistor MicroLogic)[4] in integrated circuits from Fairchild Semiconductor. Hewlett-Packard followed this with similar 16-bit computers such as the 2115A in 1967,[5] the 2114A in 1968,[6] and others.

In 1969, Data General introduced the Nova and shipped a total of 50,000 at $8000 each. The popularity of 16-bit computers such as the Hewlett-Packard 21xx series and the Data General Nova led the way toward word lengths that were multiples of the 8-bit byte. The Nova was first to employ medium-scale integration (MSI) circuits from Fairchild Semiconductor, with subsequent models using large-scale integrated (LSI) circuits. Also notable was that the entire central processor was contained on one 15-inch printed circuit board.

In 1973, the TV Typewriter, designed by Don Lancaster, provided electronics hobbyists with a display of alphanumeric information on an ordinary television set. It used $120 worth of electronics components, as outlined in the September 1973 issue of Radio Electronics magazine. The original design included two memory boards and could generate and store 512 characters as 16 lines of 32 characters. A 90-minute cassette tape provided supplementary storage for about 100 pages of text. His design used minimalistic hardware to generate the timing of the various signals needed to create the TV signal. Clive Sinclair later used the same approach in his legendary Sinclair ZX80.

Fourth generation

The basis of the fourth generation was the invention of the microprocessor by a team at Intel.

Unlike third generation minicomputers, which were essentially scaled down versions of mainframe computers, the fourth generation's origins are fundamentally different.

Microprocessor-based computers were originally very limited in their computational ability and speed, and were in no way an attempt to downsize the minicomputer. They were addressing an entirely different market.

Although processing power and storage capacities have grown beyond all recognition since the 1970s, the underlying technology of large-scale integration (LSI) or very-large-scale integration (VLSI) microchips has remained basically the same, so it is widely regarded that most of today's computers still belong to the fourth generation.

Microprocessors

1971: Intel 4004.

On November 15, 1971, Intel released the world's first commercial microprocessor, the 4004. It was developed for a Japanese calculator company, Busicom, as an alternative to hardwired circuitry, but computers were developed around it, with much of their processing abilities provided by one small microprocessor chip. Coupled with one of Intel's other products - the RAM chip, based on an invention by Robert Dennard of IBM, (kilobits of memory on one chip) - the microprocessor allowed fourth generation computers to be smaller and faster than prior computers. The 4004 was only capable of 60,000 instructions per second, but its successors, the Intel 8008, 8080 (used in many computers using the CP/M operating system), and the 8086/8088 family (the IBM personal computer (PC) and compatibles use processors still backwards-compatible with the 8086) brought ever-growing speed and power to the computers. Other producers also made microprocessors which were widely used in microcomputers.

The following tables show a timeline of significant microprocessor development.

1971 1972 1973 1974
Microprocessor Intel 4004 Fairchild PPS-25
Intel 8008
Rockwell PPS-4
Burroughs Mini-D
National IMP-16
NEC µCOM
General Instrument CP1600
Intel 4040, 8080
Mostek 5065
Motorola 6800
National IMP-4, IMP-8, ISP-8A/500, PACE
Texas Instruments TMS 1000
Toshiba TLCS-12
1975 1976 1977 1978
Microprocessor Fairchild F-8
Hewlett Packard BPC
Intersil 6100
MOS Technology 6502
RCA CDP 1801
Rockwell PPS-8
Signetics 2650
RCA CDP 1802
Signetics 8x300
Texas Instruments TMS9900
Zilog Z-80
Intel 8085 Intel 8086
Motorola 6801, 6809
1979 1980 1981 1982
Microprocessor Intel 8088
Motorola 68000
Zilog Z8000
National Semi 16032
Intel 8087
DEC T-11
Harris 6120
IBM ROMP
Hewlett Packard FOCUS
Intel 80186, 80188,
80286
Berkeley RISC-I
1983 1984 1985 1986
Microprocessor Stanford MIPS
UC Berkeley RISC-II
Motorola 68020
National Semi 32032
NEC V20
DEC MicroVax II
Harris Novix
Intel 80386
MIPS R2000
NEC V60
Sun SPARC
Zilog Z80000
1987 1988 1989 1990
Microprocessor Acorn ARM2
DEC CVAX 78034
Hitachi Gmicro/200
Motorola 68030
NEC V70
Intel 80386SX, i960
MIPS R3000
DEC VAX DC520 Rigel
Intel 80486, i860
IBM POWER1
Motorola 68040
1991 1992 1993 1994
Microprocessor DEC NVAX
IBM RSC
MIPS R4000
DEC Alpha 21064
Hewlett Packard PA-7100
Sun microSPARC I
IBM POWER2, PowerPC 601
Intel Pentium
DEC Alpha 21064A
Hewlett Packard PA-7100LC, PA-7200
IBM PowerPC 603, PowerPC 604
Motorola 68060
QED R4600
1995 1996 1997 1998
Microprocessor DEC Alpha 21164
HAL Computer SPARC64
Intel Pentium Pro
Sun UltraSPARC
AMD K5
DEC Alpha 21164A
HAL Computer SPARC64 II
Hewlett Packard PA-8000
IBM P2SC
MTI R10000
QED R5000
AMD K6
IBM PowerPC 620, PowerPC 750,
RS64, ES/390 G4
Intel Pentium II
Sun UltraSPARC IIs
DEC Alpha 21264
HAL Computer SPARC64 III
Hewlett Packard PA-8500
IBM POWER3, RS64-II
ES/390 G5
QED RM7000
SGI MIPS R12000
1999 2000 2001 2002
Microprocessor AMD Athlon
IBM RS64-III
Intel Pentium III
Motorola PowerPC 7400
AMD Athlon XP
Duron
Fujitsu SPARC64 IV
IBM RS64-IV
z900
Intel Pentium 4
IBM POWER4
Intel Itanium
Motorola PowerPC 7450
SGI MIPS R14000
Sun UltraSPARC III
Fujitsu SPARC64 V
Intel Itanium 2
2003 2004 2005 2006
Hardware Power Mac G5 iMac G5
Mac Mini Apple transition
to Intel
Microprocessor AMD Opteron
IBM PowerPC 970
Intel Pentium M
IBM POWER5
PowerPC BGL
AMD Athlon 64 X2
Opteron Athens
IBM PowerPC 970MP
Xenon
Intel Pentium D
Sun UltraSPARC IV
UltraSPARC T1
IBM Cell/B.E.
Intel Core 2
Core Duo
Itanium Montecito
2007 2008 2009 2010
Microprocessor AMD Opteron Barcelona
Fujitsu SPARC64 VI
IBM POWER, PowerPC BGP
Sun UltraSPARC T2
Tilera TILE64
AMD Opteron Shanghai, Phenom
Fujitsu SPARC64 VII
IBM PowerXCell 8i
IBM z10
Intel Atom, Core i7
Tilera TILEPro64
AMD Opteron Istanbul, Phenom II AMD Opteron Magny-cours
Fujitsu SPARC64 VII+
IBM POWER7
z196
Intel Itanium Tukwila, Westmere
Xeon, Nehalem-EX
Sun SPARC T3
2011 2012 2013 2014
Microprocessor AMD FX Bulldozer,
Interlagos,Llano
Fujitsu SPARC64 VIIIfx
Freescale PowerPC e6500
Intel Sandy Bridge, Xeon E7
Oracle SPARC T4
Fujitsu SPARC64 IXfx
IBM POWER7+, zEC12
Intel Itanium Poulson
Fujitsu SPARC64 X
Intel Haswell
Oracle SPARC T5
IBM POWER8

Supercomputers

1976: Cray-1 supercomputer.

At the other end of the computing spectrum from the microcomputers, the powerful supercomputers of the era also used integrated circuit technology. In 1976 the Cray-1 was developed by Seymour Cray, who had left Control Data in 1972 to form his own company. This machine, the first supercomputer to make vector processing practical, had a characteristic horseshoe shape, to speed processing by shortening circuit paths. Vector processing, which uses one instruction to perform the same operation on many arguments, has been a fundamental supercomputer processing method ever since. The Cray-1 could calculate 150 million floating point operations per second (150 megaflops). 85 were shipped at a price of $5 million each. The Cray-1 had a CPU that was mostly constructed of SSI and MSI ECL ICs.

Mainframes and minicomputers

Time-sharing computer terminals connected to central computers, such as the TeleVideo ASCII character mode smart terminal pictured here, were sometimes used before the advent of the PC.

Before the introduction of the microprocessor in the early 1970s, computers were generally large, costly systems owned by large institutions: corporations, universities, government agencies, and the like. Userswho were experienced specialistsdid not usually interact with the machine itself, but instead prepared tasks for the computer on off-line equipment, such as card punches. A number of assignments for the computer would be gathered up and processed in batch mode. After the jobs had completed, users could collect the output printouts and punched cards. In some organizations it could take hours or days between submitting a job to the computing center and receiving the output.

A more interactive form of computer use developed commercially by the middle 1960s. In a time-sharing system, multiple teleprinter terminals let many people share the use of one mainframe computer processor. This was common in business applications and in science and engineering.

A different model of computer use was foreshadowed by the way in which early, pre-commercial, experimental computers were used, where one user had exclusive use of a processor.[7] Some of the first computers that might be called "personal" were early minicomputers such as the LINC and PDP-8, and later on VAX and larger minicomputers from Digital Equipment Corporation (DEC), Data General, Prime Computer, and others. They originated as peripheral processors for mainframe computers, taking on some routine tasks and freeing the processor for computation. By today's standards they were physically large (about the size of a refrigerator) and costly (typically tens of thousands of US dollars), and thus were rarely purchased by individuals. However, they were much smaller, less expensive, and generally simpler to operate than the mainframe computers of the time, and thus affordable by individual laboratories and research projects. Minicomputers largely freed these organizations from the batch processing and bureaucracy of a commercial or university computing center.

In addition, minicomputers were more interactive than mainframes, and soon had their own operating systems. The minicomputer Xerox Alto (1973) was a landmark step in the development of personal computers, because of its graphical user interface, bit-mapped high resolution screen, large internal and external memory storage, mouse, and special software.[8]

Microprocessor and cost reduction

In the minicomputer ancestors of the modern personal computer, processing was carried out by circuits with large numbers of components arranged on multiple large printed circuit boards. Minicomputers were consequently physically large and expensive to produce compared with later microprocessor systems. After the "computer-on-a-chip" was commercialized, the cost to produce a computer system dropped dramatically. The arithmetic, logic, and control functions that previously occupied several costly circuit boards were now available in one integrated circuit which was very expensive to design but cheap to produce in large quantities. Concurrently, advances in developing solid state memory eliminated the bulky, costly, and power-hungry magnetic core memory used in prior generations of computers.

Micral N

Micral N
Main article: Micral

In France, the company R2E (Réalisations et Etudes Electroniques) formed by two former engineers of the Intertechnique company, André Truong Trong Thi[9][10] and François Gernelle[11] introduced in February 1973 a microcomputer, the Micral N based on the Intel 8008.[12] Originally, the computer had been designed by Gernelle, Lacombe, Beckmann and Benchitrite for the Institut National de la Recherche Agronomique to automate hygrometric measurements.[13][14] The Micral N cost a fifth of the price of a PDP-8, about 8500FF ($1300). The clock of the Intel 8008 was set at 500 kHz, the memory was 16 kilobytes. A bus, called Pluribus was introduced and allowed connection of up to 14 boards. Different boards for digital I/O, analog I/O, memory, floppy disk were available from R2E.

Altair 8800 and IMSAI 8080

Main articles: Altair 8800 and IMSAI 8080

Development of the single-chip microprocessor was an enormous catalyst to the popularization of cheap, easy to use, and truly personal computers. The Altair 8800, introduced in a Popular Electronics magazine article in the January 1975 issue, at the time set a new low price point for a computer, bringing computer ownership to an admittedly select market in the 1970s. This was followed by the IMSAI 8080 computer, with similar abilities and limitations. The Altair and IMSAI were essentially scaled-down minicomputers and were incomplete: to connect a keyboard or teleprinter to them required heavy, expensive "peripherals". These machines both featured a front panel with switches and lights, which communicated with the operator in binary. To program the machine after switching it on the bootstrap loader program had to be entered, without error, in binary, then a paper tape containing a BASIC interpreter loaded from a paper-tape reader. Keying the loader required setting a bank of eight switches up or down and pressing the "load" button, once for each byte of the program, which was typically hundreds of bytes long. The computer could run BASIC programs once the interpreter had been loaded.

The MITS Altair, the first commercially successful microprocessor kit, was featured on the cover of Popular Electronics magazine in January 1975. It was the world's first mass-produced personal computer kit, as well as the first computer to use an Intel 8080 processor. It was a commercial success with 10,000 Altairs being shipped. The Altair also inspired the software development efforts of Paul Allen and his high school friend Bill Gates who developed a BASIC interpreter for the Altair, and then formed Microsoft.

The MITS Altair 8800 effectively created a new industry of microcomputers and computer kits, with many others following, such as a wave of small business computers in the late 1970s based on the Intel 8080, Zilog Z80 and Intel 8085 microprocessor chips. Most ran the CP/M-80 operating system developed by Gary Kildall at Digital Research. CP/M-80 was the first popular microcomputer operating system to be used by many different hardware vendors, and many software packages were written for it, such as WordStar and dBase II.

Many hobbyists during the mid-1970s designed their own systems, with various degrees of success, and sometimes banded together to ease the job. Out of these house meetings the Homebrew Computer Club developed, where hobbyists met to talk about what they had done, exchange schematics and software, and demonstrate their systems. Many people built or assembled their own computers as per published designs. For example, many thousands of people built the Galaksija home computer later in the early 1980s.

It was arguably the Altair computer that spawned the development of Apple, as well as Microsoft which produced and sold the Altair BASIC programming language interpreter, Microsoft's first product. The second generation of microcomputers, those that appeared in the late 1970s, sparked by the unexpected demand for the kit computers at the electronic hobbyist clubs, were usually known as home computers. For business use these systems were less capable and in some ways less versatile than the large business computers of the day. They were designed for fun and educational purposes, not so much for practical use. And although you could use some simple office/productivity applications on them, they were generally used by computer enthusiasts for learning to program and for running computer games, for which the personal computers of the period were less suitable and much too expensive. For the more technical hobbyists home computers were also used for electronics interfacing, such as controlling model railroads, and other general hobbyist pursuits.

Microcomputer emerges

The Apple II, one of the "1977 Trinity". The drive shown is a model made for the Apple III.
Main article: Personal computer

The advent of the microprocessor and solid-state memory made home computing affordable. Early hobby microcomputer systems such as the Altair 8800 and Apple I introduced around 1975 marked the release of low-cost 8-bit processor chips, which had sufficient computing power to be of interest to hobby and experimental users. By 1977 pre-assembled systems such as the Apple II, Commodore PET, and TRS-80 (later dubbed the "1977 Trinity" by Byte Magazine)[15] began the era of mass-market home computers; much less effort was required to obtain an operating computer, and applications such as games, word processing, and spreadsheets began to proliferate. Distinct from computers used in homes, small business systems were typically based on CP/M, until IBM introduced the IBM-PC, which was quickly adopted. The PC was heavily cloned, leading to mass production and consequent cost reduction throughout the 1980s. This expanded the PCs presence in homes, replacing the home computer category during the 1990s and leading to the current monoculture of architecturally identical personal computers.

Computer Systems and Important Hardware Timeline

1959 1960 1961 1962
Hardware IBM First Transistor Computer DEC PDP 1 Fairchild resistor-
transistor logic
NPN Transistor
1963 1964 1965 1966
Hardware Mouse
CMOS Patented
CDC 6600
IBM Data Cell Drive
DEC PDP 8
IBM 1130
ILLIAC IV
1967 1968 1969 1970
Hardware Fairchild built first MOS
Englebart applies for mouse patent.
Data General
Nova
Honeywell 316 DEC PDP 11
1971 1972 1973 1974
Hardware 8" Floppy Disk Atari Founded
Cray Research Founded
Micral first
Microprocessor PC
Altair 8800
Data General Eclipse
1975 1976 1977 1978
Hardware Olivetti P6060 Tandem Computer Apple ][
5.25" Floppy
DEC VAX 11
1979 1980 1981 1982
Hardware Atari 400 & 800 Seagate
Hard Disk
IBM PC Commodore 64
1983 1984 1985 1986
Hardware Apple Lisa
3.5" Floppy
Apple Mac
Apple Lisa 2
PC Limited Tandem Nonstop VLX
1987 1988 1989 1990
Hardware Thinking Machine CM2
Tera Computer Founded
Dell NeXT ETA10
1991 1992 1993 1994
Hardware Apple Switches
to PowerPC
HP 95LX
Palmtop PC
Intel PPGA VESA Local Bus
1995 1996 1997 1998
Hardware IBM Deep Blue
Chess Computer
USB 1.0 Compaq buys Tandem
CD RW Drives
iMac
1999 2000 2001 2002
Hardware USB 2 Apple iPod
2003 2004 2005 2006
Hardware Power Mac G5 iMac G5
Mac Mini Apple transition
to Intel
2007 2008 2009 2010
Hardware iPhone 1
Mac Book Pro
USB 3.0
iPhone 3G
Apple Xservve Apple iPad
2011 2012 2013 2014
Hardware Iphone 4S iPhone 5
IBM zEnterprise System
iPhone 5c & 5s iPhone 6

See also

Notes

  1. D. A. Slotnick, The Fastest Computer, Scientific American February 1971, reprinted in Computers and Computation, Freeman and Company, San Francisco 1971, ISBN 0-7167-0936-8
  2. History of the 2116A digital computer http://www.hp.com/hpinfo/abouthp/histnfacts/museum/earlyinstruments/0001/0001history.html
  3. HP: The Accidentally, On-Purpose Computer Company http://www.hp9825.com/html/hp_2116.html
  4. Fairchild CTµL Integrated Circuits http://www.cs.ubc.ca/~hilpert/e/HP21xx/CTL.html
  5. http://www.hpmuseum.net/display_item.php?hw=96
  6. http://hpmuseum.net/display_item.php?hw=97
  7. Athony Ralston and edwin D. Reilly (ed), Encyclopedia of Computer Science 3rd Edition, Van Nostrand Reinhold, 1993 ISBN 0-442-27679-6, article Digital Computers History
  8. Rheingold, H. (2000). Tools for thought: the history and future of mind-expanding technology (New ed.). Cambridge, MA etc.: The MIT Press.
  9. Décès d'André Truong, inventeur du micro-ordinateur - Actualités - ZDNet.fr
  10. André Truong, père du micro-ordinateur, nous a quittés Actualité - Silicon.fr
  11. Gernelle creator of the first micro computer
  12. Roy A. Allan A History of the Personal Computer (Alan Publishing, 2001) ISBN 0-9689108-0-7 Chapter 4 (PDF: https://archive.org/download/A_History_of_the_Personal_Computer/eBook04.pdf)
  13. Groupe BULL chronology
  14. OLD-COMPUTERS.COM : The Museum
  15. "Most Important Companies". Byte. September 1995. Archived from the original on 2008-06-18. Retrieved 2008-06-10.

References

External links