Hamming space

In statistics and coding theory, a Hamming space is usually the set of all 2^N binary strings of length N.[1][2] It is used in the theory of coding signals and transmission.

More generally, the Hamming space can be defined over any alphabet (set) Q as the set of words of a fixed length N with letters from Q.[3][4] If Q is a finite field, then a Hamming space over Q is an N-dimensional vector space over Q. In the typical, binary case, the field is thus GF(2).[3]

In coding theory, if Q has q elements, then any subset C (usually assumed of cardinality at least two) of the N-dimensional Hamming space over Q is called a q-ary code of length N; the elements of C are called codewords.[3][4] In the case where C is a linear subspace of its Hamming space, it is called a linear code.[3]

The Hamming distance endows a Hamming space with a metric, which is essential in defining basic notions of coding theory such as error detecting and error correcting codes.[3]

See also

References

  1. Baylis, D. J. (1997), Error Correcting Codes: A Mathematical Introduction, Chapman Hall/CRC Mathematics Series 15, CRC Press, p. 62, ISBN 9780412786907
  2. Cohen, G.; Honkala, I.; Litsyn, S.; Lobstein, A. (1997), Covering Codes, North-Holland Mathematical Library 54, Elsevier, p. 1, ISBN 9780080530079
  3. 3.0 3.1 3.2 3.3 3.4 Derek J.S. Robinson (2003). An Introduction to Abstract Algebra. Walter de Gruyter. pp. 254–255. ISBN 978-3-11-019816-4.
  4. 4.0 4.1 Cohen et al., Covering Codes, p. 15