HDAC9

Histone deacetylase 9
Identifiers
SymbolsHDAC9 ; HD7; HD7b; HD9; HDAC; HDAC7; HDAC7B; HDAC9B; HDAC9FL; HDRP; MITR
External IDsOMIM: 606543 MGI: 1931221 HomoloGene: 128578 IUPHAR: 2620 ChEMBL: 4145 GeneCards: HDAC9 Gene
EC number3.5.1.98
Orthologs
SpeciesHumanMouse
Entrez973479221
EnsemblENSG00000048052ENSMUSG00000004698
UniProtQ9UKV0Q99N13
RefSeq (mRNA)NM_001204144NM_001271386
RefSeq (protein)NP_001191073NP_001258315
Location (UCSC)Chr 7:
18.13 – 19.04 Mb
Chr 12:
34.37 – 34.53 Mb
PubMed search

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.[1][2][3]

Function

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene has sequence homology to members of the histone deacetylase family. This gene is orthologous to the Xenopus and mouse MITR genes. The MITR protein lacks the histone deacetylase catalytic domain. It represses MEF2 activity through recruitment of multicomponent corepressor complexes that include CtBP and HDACs. This encoded protein may play a role in hematopoiesis. Multiple alternatively spliced transcripts have been described for this gene but the full-length nature of some of them has not been determined.[3]

Interactions

HDAC9 has been shown to interact with:

See also


References

  1. Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH et al. (November 1999). "HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor". Mol Cell Biol 19 (11): 7816–27. PMC 84849. PMID 10523670.
  2. Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N et al. (November 1999). "MEF-2 function is modified by a novel co-repressor, MITR". EMBO J 18 (18): 5085–98. doi:10.1093/emboj/18.18.5085. PMC 1171579. PMID 10487760.
  3. 3.0 3.1 "Entrez Gene: HDAC9 histone deacetylase 9".
  4. 4.0 4.1 Zhang CL, McKinsey TA, Olson EN (October 2002). "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Mol. Cell. Biol. 22 (20): 7302–12. doi:10.1128/mcb.22.20.7302-7312.2002. PMC 139799. PMID 12242305.
  5. 5.0 5.1 5.2 Petrie K, Guidez F, Howell L, Healy L, Waxman S, Greaves M et al. (May 2003). "The histone deacetylase 9 gene encodes multiple protein isoforms". J. Biol. Chem. 278 (18): 16059–72. doi:10.1074/jbc.M212935200. PMID 12590135.
  6. Zhou X, Richon VM, Rifkind RA, Marks PA (February 2000). "Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1056–61. doi:10.1073/pnas.97.3.1056. PMC 15519. PMID 10655483.
  7. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (September 1999). "HDAC4 deacetylase associates with and represses the MEF2 transcription factor". EMBO J. 18 (18): 5099–107. doi:10.1093/emboj/18.18.5099. PMC 1171580. PMID 10487761.
  8. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (May 2000). "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". J. Biol. Chem. 275 (20): 15594–9. doi:10.1074/jbc.M908437199. PMID 10748098.
  9. Koipally J, Georgopoulos K (June 2002). "Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression". J. Biol. Chem. 277 (26): 23143–9. doi:10.1074/jbc.M202079200. PMID 11959865.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.