Group 2 organometallic chemistry

The group 2 elements are known to form organometallic compounds.[1][2] Of these, organomagnesium compounds, usually in the form of Grignard reagents are widely used in organic chemistry, while the other organometallic compounds of this group are largely academic.

Characteristics

In many ways the chemistry of group 2 elements (the alkaline earth metals) mimics that of group 12 elements because both groups have filled s shells for valence electrons. Thus, both groups have nominal valency 2 and oxidation state +2. All group 2 elements are electropositive towards carbon and electronegativity decreases down the row. At the same time the atomic radius increases resulting in increasingly ionic character, higher coordination numbers, and increased ligand reactivity.

Many dialkyl group 2 metals are polymeric in the crystalline phase and resemble trimethylaluminium in three-center two-electron bond. In the gas-phase they are once again monomeric.

The metallocenes in this group are unusual. Bis(cyclopentadienyl)beryllium or beryllocene (Cp2Be) with a molecular dipole moment of 2.2 D rules out a classical metallocene with two hapticity 5 ligands. Instead the compound is a so-called slip 5η/1η sandwich and on top of that also fluxional up to −125 °C. While magnesocene (Cp2Mg) is a regular metallocene, bis(pentamethylcyclopentadienyl)calcium (Cp*)2Ca is actually bent with an angle of 147°. This angle increases going down the row.

Low-valent organometallics with formal oxidation state 1 having a metal to metal bond are also known.[3] A representative is LMg-MgL with L = [(Ar)NC(NPri2)N(Ar)].[4]

Synthesis

Three important ways for synthesis of dialkyl and diaryl group 2 metal compounds is by metathesis:

MX2 + R-Y MR2 + Y-X'

By transmetallation:

M'R2 + M MR2 + M'

Manipulation of the Schlenk equilibrium of the organometal halides:

2 RMX MR2 + MX2

See for example the formation of dimethylmagnesium.

Compounds

Organoberyllium

Organoberyllium chemistry is limited to academic research due to the cost and toxicity of beryllium, beryllium derivatives and reagents required for the introduction of beryllium, such as beryllium chloride. Examples of known organoberyllium compounds are dineopentylberyllium,[5] beryllocene (Cp2Be),[6][7][8][9] diallylberyllium (by exchange reaction of diethyl beryllium with triallyl boron)[10] and bis(1,3-trimethylsilylallyl)beryllium.[11] Ligands can also be aryls[12] and alkynyls.[13]

See also: Berylliosis

Organomagnesium

Organomagnesium compounds are widespread. They are commonly found as Grignard reagents. The formation of alkyl or aryl magnesium halides (RMgX) from magnesium metal and an alkyl halide is attributed to a SET process. Examples of Grignards are phenylmagnesium bromide and ethylmagnesium bromide.

Relevant organic magnesium reagents outside the scope of Grignards are magnesium anthracene with magnesium forming a 1,4-bridge over the central hexagon used as a source of highly active magnesium and butadiene magnesium an adduct with butadiene and a source for the butadiene dianion.

Organocalcium

Further down this group calcium is nontoxic and cheap but organocalcium compounds are difficult to make. This is even more so for the remaining members strontium and barium, and for the case of radium there are none known at all. One use for this type of compounds is in chemical vapor deposition.

A well known organocalcium compound is (Cp)calcium(I). Bis(allyl)calcium was described in 2009.[14] It forms in a metathesis reaction of allylpotassium and calcium iodide as a stable non-pyrophoric off-white powder:

2 KC3H5 + CaI2 (C3H5)2Ca + 2 KI (THF 25 °C)

The bonding mode is η3. This compound is also reported to give access to an η1 polymeric (CaCH2CHCH2)n compound.[15]

The compound [(thf)3Ca{μ-C6H3-1,3,5-Ph3}Ca(thf)3] also described in 2009[16][17] is an inverse sandwich compound with two calcium atoms at either side of an arene.

Olefins tethered to cyclopentadienyl ligands have been shown to coordinate to calcium(II), strontium(II), and barium(II):[18]

Organocalcium compounds are investigated as catalysts. [19] [20] [21] [22] [23]


Organostrontium

Organostrontium compounds have been reported as intermediates in Barbier-type reactions.[24][25][26]

Organobarium

Organobarium compounds[27] of the type (allyl)BaCl are known[28][29] and can be prepared by reaction of activated barium (Rieke method reduction of barium iodide with lithium biphenylide) with allyl halides at −78 °C. Subsequent reaction of these allylbarium compounds with carbonyl compounds is reported to be more alpha-selective and more stereoselective than the related Grignards or organocalcium compounds. The metallocene (Cp*)2Ba has also been reported.[30]

Organoradium

The only known organoradium compound is the gas-phase acetylide.

See also

CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl CAr
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs style="background-color:#98FF98" border-collapse:collapse" | CSe CBr CKr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr CRa Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
CLa CCe CPr CNd CPm CSm CEu CGd CTb CDy CHo CEr CTm CYb CLu
Ac CTh CPa CU CNp CPu CAm CCm CBk CCf CEs Fm Md No Lr
Chemical bonds to carbon
Core organic chemistry Many uses in chemistry
Academic research, but no widespread use Bond unknown

References

  1. Comprehensive Organometallic Chemistry by Mike Mingos, Robert Crabtree 2007 ISBN 978-0-08-044590-8
  2. C. Elschenbroich, A. Salzer Organometallics : A Concise Introduction (2nd Ed) (1992) from Wiley-VCH: Weinheim. ISBN 3-527-28165-7
  3. Schulz, Stephan (2010). "Low-Valent Organometallics-Synthesis, Reactivity, and Potential Applications". Chemistry – A European Journal 16 (22): 6416–28. doi:10.1002/chem.201000580. PMID 20486240.
  4. Green, S. P.; Jones, C.; Stasch, A. (2007). "Stable Magnesium(I) Compounds with Mg-Mg Bonds". Science 318 (5857): 1754–7. Bibcode:2007Sci...318.1754G. doi:10.1126/science.1150856. PMID 17991827.
  5. Coates, G. E.; Francis, B. R. (1971). "Preparation of base-free beryllium alkyls from trialkylboranes. Dineopentylberyllium, bis(trimethylsilylmethyl)beryllium, and an ethylberyllium hydride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1308. doi:10.1039/J19710001308.
  6. Fischer, Ernst Otto; Hofmann, Hermann P. (1959). "Über Aromatenkomplexe von Metallen, XXV. Di-cyclopentadienyl-beryllium". Chemische Berichte 92 (2): 482. doi:10.1002/cber.19590920233.
  7. Nugent, KW; Beattie, JK; Hambley, TW; Snow, MR (1984). "A precise low-temperature crystal structure of Bis(cyclopentadienyl)beryllium". Australian Journal of Chemistry 37 (8): 1601. doi:10.1071/CH9841601.
  8. Almenningen, A; Haaland, Arne; Lusztyk, Janusz (1979). "The molecular structure of beryllocene, (C5H5)2Be. A reinvestigation by gas phase electron diffraction". Journal of Organometallic Chemistry 170 (3): 271. doi:10.1016/S0022-328X(00)92065-5.
  9. Wong, C. H.; Lee, T. Y.; Chao, K. J.; Lee, S. (1972). "Crystal structure of bis(cyclopentadienyl)beryllium at −120 °C". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 28 (6): 1662. doi:10.1107/S0567740872004820.
  10. Wiegand, G.; Thiele, K.-H. (1974). "Ein Beitrag zur Existenz von Allylberyllium- und Allylaluminiumverbindungen". Zeitschrift für anorganische und allgemeine Chemie 405: 101. doi:10.1002/zaac.19744050111.
  11. Chmely, Stephen C.; Hanusa, Timothy P.; Brennessel, William W. (2010). "Bis(1,3-trimethylsilylallyl)beryllium". Angewandte Chemie International Edition 49 (34): 5870–4. doi:10.1002/anie.201001866. PMID 20575128.
  12. Ruhlandt-Senge, Karin; Bartlett, Ruth A.; Olmstead, Marilyn M.; Power, Philip P. (1993). "Synthesis and structural characterization of the beryllium compounds [Be(2,4,6-Me3C6H2)2(OEt2)], [Be{O(2,4,6-tert-Bu3C6H2)}2(OEt2)], and [Be{S(2,4,6-tert-Bu3C6H2)}2(THF)].cntdot.PhMe and determination of the structure of [BeCl2(OEt2)2]". Inorganic Chemistry 32: 1724. doi:10.1021/ic00061a031.
  13. Morosin, B; Howatson, J. (1971). "The crystal structure of dimeric methyl-1-propynyl- beryllium-كس امك trimethylamine". Journal of Organometallic Chemistry 29: 7. doi:10.1016/S0022-328X(00)87485-9.
  14. "Bis(allyl)calcium" Phillip Jochmann, Thomas S. Dols, Thomas P. Spaniol, Lionel Perrin, Laurent Maron, Jun Okuda Angewandte Chemie International Edition Volume 48 Issue 31, Pages 5715–5719 2009 doi:10.1002/anie.200901743
  15. Lichtenberg, C., Jochmann, P., Spaniol, T. P. and Okuda, J. (2011), "The Allylcalcium Monocation: A Bridging Allyl Ligand with a Non-Bent Coordination Geometry". Angewandte Chemie International Edition, 50: 5753–5756. doi:10.1002/anie.201100073
  16. "Stable 'Inverse' Sandwich Complex with Unprecedented Organocalcium(I): Crystal Structures of [(thf)2Mg(Br)-C6H2-2,4,6-Ph3] and [(thf)3Ca{μ-C6H3-1,3,5-Ph3}Ca(thf)3]" Sven Krieck, Helmar Grls, Lian Yu, Markus Reiher and Matthias Westerhausen J. Am. Chem. Soc., 2009, 131 (8), pp 2977–2985 doi:10.1021/ja808524y
  17. "Organometallic Compounds of the Heavier s-Block Elements—What Next?" J. David Smith Angew. Chem. Int. Ed. 2009, 48, 6597–6599 doi:10.1002/anie.200901506
  18. H. Schumann; S. Schutte; H.-J. Kroth; D. Lentz (2004). "Butenyl-Substituted Alkaline-Earth Metallocenes: A First Step towards Olefin Complexes of the Alkaline-Earth Metals". Angew. Chem. Int. Ed. 43: 6208–6211. doi:10.1002/anie.200460927.
  19. Harder, S., Feil, F. and Knoll, K. (2001), Novel Calcium Half-Sandwich Complexes for the Living and Stereoselective Polymerization of Styrene . Angew. Chem. Int. Ed., 40: 4261–4264. doi:10.1002/1521-3773(20011119)40
  20. Calcium-Mediated Intramolecular Hydroamination Catalysis Mark R. Crimmin,Ian J. Casely, and, and Michael S. Hill Journal of the American Chemical Society 2005 127 (7), 2042-2043 doi:10.1021/ja043576n
  21. 2,5-Bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrolyl Complexes of the Heavy Alkaline Earth Metals: Synthesis, Structures, and Hydroamination Catalysis Jelena Jenter, Ralf Köppe, and Peter W. Roesky Organometallics 2011 30 (6), 1404-1413 doi:10.1021/om100937c
  22. Cation Charge Density and Precatalyst Selection in Group 2-Catalyzed Aminoalkene Hydroamination Merle Arrowsmith, Mark R. Crimmin, Anthony G. M. Barrett, Michael S. Hill, Gabriele Kociok-Köhn, and Panayiotis A. Procopiou Organometallics 2011 30 (6), 1493-1506 doi:10.1021/om101063m
  23. Penafiel, J., Maron, L. and Harder, S. (2014), Early Main Group Metal Catalysis: How Important is the Metal?. Angew. Chem. Int. Ed. doi:10.1002/anie.201408814
  24. Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.; Kuwata, R.; Ikehara, D.; Wada, M. (2004). "The Barbier-Type Alkylation of Aldehydes with Alkyl Halides in the Presence of Metallic Strontium". Bulletin of the Chemical Society of Japan 77 (2): 341. doi:10.1246/bcsj.77.341.
  25. Miyoshi, N.; Ikehara, D.; Kohno, T.; Matsui, A.; Wada, M. (2005). "The Chemistry of Alkylstrontium Halide Analogues: Barbier-type Alkylation of Imines with Alkyl Halides". Chemistry Letters 34 (6): 760. doi:10.1246/cl.2005.760.
  26. Miyoshi, N.; Matsuo, T.; Wada, M. (2005). "The Chemistry of Alkylstrontium Halide Analogues, Part 2: Barbier-Type Dialkylation of Esters with Alkyl Halides". European Journal of Organic Chemistry 2005 (20): 4253. doi:10.1002/ejoc.200500484.
  27. Comprehensive organic functional group transformations Alan R. Katritzky, Otto Meth-Cohn, Charles Wayne Rees
  28. Yanagisawa, A.; Habaue, S.; Yamamoto, H. (1991). "Allylbarium in organic synthesis: unprecedented .alpha.-selective and stereospecific allylation of carbonyl compounds". Journal of the American Chemical Society 113 (23): 8955. doi:10.1021/ja00023a058.
  29. Yanagisawa, A.; Habaue, S.; Yasue, K.; Yamamoto, H. (1994). "Allylbarium Reagents: Unprecedented Regio- and Stereoselective Allylation Reactions of Carbonyl Compounds". Journal of the American Chemical Society 116 (14): 6130. doi:10.1021/ja00093a010.
  30. Williams, R. A.; Hanusa, T. P.; Huffman, J. C. (1988). "Solid state structure of bis(pentamethylcyclopentadienyl)barium, (Me5C5)2Ba; the first X-ray crystal structure of an organobarium complex". Journal of the Chemical Society, Chemical Communications (15): 1045. doi:10.1039/C39880001045.