Globin
Globin family | |||||||||
---|---|---|---|---|---|---|---|---|---|
the Structure of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site.[1] | |||||||||
Identifiers | |||||||||
Symbol | Globin | ||||||||
Pfam | PF00042 | ||||||||
Pfam clan | CL0090 | ||||||||
InterPro | IPR000971 | ||||||||
PROSITE | PS01033 | ||||||||
SCOP | 1hba | ||||||||
SUPERFAMILY | 1hba | ||||||||
CDD | cd01067 | ||||||||
|
Bac_globin | |||||||||
---|---|---|---|---|---|---|---|---|---|
crystal structure of "truncated" hemoglobin n (hbn) from mycobacterium tuberculosis, soaked with xe atoms | |||||||||
Identifiers | |||||||||
Symbol | Bac_globin | ||||||||
Pfam | PF01152 | ||||||||
Pfam clan | CL0090 | ||||||||
InterPro | IPR001486 | ||||||||
PROSITE | PDOC00933 | ||||||||
SCOP | 1dlw | ||||||||
SUPERFAMILY | 1dlw | ||||||||
|
The globins are a family of globular proteins, which are thought to share a common ancestor. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members of this family include myoglobin and hemoglobin, which both bind the heme (also haem) prosthetic group. Both of these proteins are reversible oxygen binders.
Globins are haem-containing proteins involved in binding and/or transporting oxygen. They belong to a very large and well studied family that is widely distributed in many organisms.[2]
Types
Globins evolved from a common ancestor and can be divided into three groups: single-domain globins, and two types of chimeric globins, flavohaemoglobins and globin-coupled sensors. Bacteria have all three types of globins, while archaea lack flavohaemoglobins, and eukaryotes lack globin-coupled sensors.[3] Several functionally different haemoglobins can coexist in the same species.
Eight globins are known to occur in vertebrates: androglobin, cytoglobin, globin E, globin X, globin Y, haemoglobin, myoglobin and neuroglobin.
Subfamilies
- Leghaemoglobin IPR001032
- Myoglobin IPR002335
- Erythrocruorin IPR002336
- Haemoglobin, beta IPR002337
- Haemoglobin, alpha IPR002338
- Myoglobin, trematode type IPR011406
- Globin, nematode IPR012085
- Globin, lamprey/hagfish type IPR013314
- Globin, annelid-type IPR013316
- Haemoglobin, extracellular IPR014610
Examples
Human genes encoding globin proteins include:
The globins include:
- Haemoglobin (Hb)
- Myoglobin (Mb)
- Neuroglobin: a myoglobin-like haemprotein expressed in vertebrate brain and retina, where it is involved in neuroprotection from damage due to hypoxia or ischemia.[4] Neuroglobin belongs to a branch of the globin family that diverged early in evolution.
- Cytoglobin: an oxygen sensor expressed in multiple tissues. Related to neuroglobin.[5]
- Erythrocruorin: highly cooperative extracellular respiratory proteins found in annelids and arthropods that are assembled from as many as 180 subunit into hexagonal bilayers.[6]
- Leghaemoglobin (legHb or symbiotic Hb): occurs in the root nodules of leguminous plants, where it facilitates the diffusion of oxygen to symbiotic bacteriods in order to promote nitrogen fixation.
- Non-symbiotic haemoglobin (NsHb): occurs in non-leguminous plants, and can be over-expressed in stressed plants .
- Flavohaemoglobins (FHb): chimeric, with an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD/FAD-binding domain. FHb provides protection against nitric oxide via its C-terminal domain, which transfers electrons to haem in the globin.[7]
- Globin E: a globin responsible for storing and delivering oxygen to the retina in birds[8]
- Globin-coupled sensors: chimeric, with an N-terminal myoglobin-like domain and a C-terminal domain that resembles the cytoplasmic signalling domain of bacterial chemoreceptors. They bind oxygen, and act to initiate an aerotactic response or regulate gene expression.[9][10]
- Protoglobin: a single domain globin found in archaea that is related to the N-terminal domain of globin-coupled sensors.[11]
- Truncated 2/2 globin: lack the first helix, giving them a 2-over-2 instead of the canonical 3-over-3 alpha-helical sandwich fold. Can be divided into three main groups (I, II and II) based on structural features.
- HbN (or GlbN): a truncated haemoglobin-like protein that binds oxygen cooperatively with a very high affinity and a slow dissociation rate, which may exclude it from oxygen transport. It appears to be involved in bacterial nitric oxide detoxification and in nitrosative stress.[12]
- Cyanoglobin (or GlbN): a truncated haemoprotein found in cyanobacteria that has high oxygen affinity, and which appears to serve as part of a terminal oxidase, rather than as a respiratory pigment.[13]
- HbO (or GlbO): a truncated haemoglobin-like protein with a lower oxygen affinity than HbN. HbO associates with the bacterial cell membrane, where it significantly increases oxygen uptake over membranes lacking this protein. HbO appears to interact with a terminal oxidase, and could participate in an oxygen/electron-transfer process that facilitates oxygen transfer during aerobic metabolism.[14]
- Glb3: a nuclear-encoded truncated haemoglobin from plants that appears more closely related to HbO than HbN. Glb3 from Arabidopsis thaliana (Mouse-ear cress) exhibits an unusual concentration-independent binding of oxygen and carbon dioxide.[15]
See also
References
- ↑ Kavanaugh JS, Rogers PH, Case DA, Arnone A (April 1992). "High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site". Biochemistry 31 (16): 4111–21. doi:10.1021/bi00131a030. PMID 1567857.
- ↑ Vinogradov SN, Hoogewijs D, Bailly X, Mizuguchi K, Dewilde S, Moens L, Vanfleteren JR (August 2007). "A model of globin evolution". Gene 398 (1-2): 132â42. doi:10.1016/j.gene.2007.02.041. PMID 17540514.
- ↑ Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, Moens L, Vanfleteren JR (2006). "A phylogenomic profile of globins". BMC Evol. Biol. 6: 31. doi:10.1186/1471-2148-6-31. PMC 1457004. PMID 16600051.
- ↑ Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (September 2003). "Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity". Structure 11 (9): 1087â95. doi:10.1016/S0969-2126(03)00166-7. PMID 12962627.
- ↑ Fago A, Hundahl C, Malte H, Weber RE (2004). "Functional properties of neuroglobin and cytoglobin. Insights into the ancestral physiological roles of globins". IUBMB Life 56 (11-12): 689â96. doi:10.1080/15216540500037299. PMID 15804833.
- ↑ Royer WE, Omartian MN, Knapp JE (January 2007). "Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein". J. Mol. Biol. 365 (1): 226â36. doi:10.1016/j.jmb.2006.10.016. PMC 1847385. PMID 17084861.
- ↑ Mukai M, Mills CE, Poole RK, Yeh SR (March 2001). "Flavohemoglobin, a globin with a peroxidase-like catalytic site". J. Biol. Chem. 276 (10): 7272â7. doi:10.1074/jbc.M009280200. PMID 11092893.
- ↑ Blank M, Kiger L, Thielebein A, Gerlach F, Hankeln T, Marden MC, Burmeister T (2011). "Oxygen supply from the bird's eye perspective: Globin E is a respiratory protein in the chicken retina". J. Biol. Chem. 286 (30): 26507–15. doi:10.1074/jbc.M111.224634. PMC 3143615. PMID 21622558.
- ↑ Hou S, Freitas T, Larsen RW, Piatibratov M, Sivozhelezov V, Yamamoto A, Meleshkevitch EA, Zimmer M, Ordal GW, Alam M (July 2001). "Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria". Proc. Natl. Acad. Sci. U.S.A. 98 (16): 9353â8. doi:10.1073/pnas.161185598. PMC 55424. PMID 11481493.
- ↑ Freitas TA, Saito JA, Hou S, Alam M (January 2005). "Globin-coupled sensors, protoglobins, and the last universal common ancestor". J. Inorg. Biochem. 99 (1): 23â33. doi:10.1016/j.jinorgbio.2004.10.024. PMID 15598488.
- ↑ Freitas TA, Hou S, Dioum EM, Saito JA, Newhouse J, Gonzalez G, Gilles-Gonzalez MA, Alam M (April 2004). "Ancestral hemoglobins in Archaea". Proc. Natl. Acad. Sci. U.S.A. 101 (17): 6675â80. doi:10.1073/pnas.0308657101. PMC 404104. PMID 15096613.
- ↑ Lama A, Pawaria S, Dikshit KL (July 2006). "Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis". FEBS Lett. 580 (17): 4031â41. doi:10.1016/j.febslet.2006.06.037. PMID 16814781.
- ↑ Yeh DC, Thorsteinsson MV, Bevan DR, Potts M, La Mar GN (February 2000). "Solution 1H NMR study of the heme cavity and folding topology of the abbreviated chain 118-residue globin from the cyanobacterium Nostoc commune". Biochemistry 39 (6): 1389â99. doi:10.1021/bi992081l. PMID 10684619.
- ↑ Pathania R, Navani NK, Rajamohan G, Dikshit KL (May 2002). "Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli". J. Biol. Chem. 277 (18): 15293â302. doi:10.1074/jbc.M111478200. PMID 11796724.
- ↑ Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (August 2001). "A hemoglobin from plants homologous to truncated hemoglobins of microorganisms". Proc. Natl. Acad. Sci. U.S.A. 98 (18): 10119â24. doi:10.1073/pnas.191349198. PMC 56925. PMID 11526234.
|
This article incorporates text from the public domain Pfam and InterPro IPR001486