Gerhard Klimeck

Gerhard Klimeck
Gerhard Klimeck
Born 15 March 1966[1]
Essen, West Germany
Residence United States
Nationality United States, Germany
Fields Electrical Engineering
Electron transport
Quantum mechanics
Institutions Purdue University
University of Texas at Dallas
California Institute of Technology
Alma mater Ruhr University Bochum
Purdue University
Known for Nanoelectronics, nanoHUB

Gerhard Klimeck is a German-American scientist and author in the field of nanotechnology. He is a fellow of the Institute of Physics (IOP), a fellow of the American Physical Society (APS), and a fellow of IEEE. He is the Reilly Director of the Center for Predictive Materials and Devices (c-PRIMED), the Director of nanoHUB, the Network for Computational Nanotechnology at Purdue University, and a Professor of Electrical and Computer Engineering. He guides the technical developments and strategies of nanoHUB.org which annually serves over 330,000 users worldwide with online simulation, tutorials, and seminars.

Education

Klimeck received his Ph.D. in 1994 from Purdue University where he studied electron transport through quantum dots, resonant tunneling diodes and 2-D electron gases. His German electrical engineering degree in 1990 from Ruhr University Bochum was concerned with the study of laser noise propagation.

Career

Klimeck's research interest is in the modeling of nanoelectronic devices, parallel cluster computing, genetic algorithms, and parallel image processing. He has been driving the development of the Nanoelectronic Modeling Tool NEMO since 1994. Klimeck was the Technical Group Supervisor of the High Performance Computing Group and a Principal Scientist at the NASA Jet Propulsion Laboratory, California Institute of Technology. Previously he was a member of technical staff at the Central Research Lab of Texas Instruments where he served as manager and principal archetict of the Nanoelectronic Modeling (NEMO 1-D) program. At JPL and Purdue, Klimeck developed the Nanoelectronic Modeling Tool (NEMO 3-D) for multimillion atom simulations. NEMO 1-D was the first quantitative simulation tool for resonant tunneling diodes and 1D heterostructures. NEMO 3-D was the first multi-million atom electronic structure code and has been used to quantitatively model optical properties of self-assembled quantum dots, disordered Si/SiGe systems, and single impurities in Silicon. The NEMO are based on the representation of the nanoelectronic device with atomistic empirical tight-binding. Quantitative device modeling was demonstrated without any material parameter adjustments, just by entry of geometrical structure parameters. At Purdue his group is developing a new simulation engines that combine the NEMO 1-D and NEMO 3-D capabilities into new codes entitled OMEN and NEMO5. NEMO 1-D was demonstrated to scale to 23,000 parallel processors, NEMO 3-D was demonstrated to scale to 8,192 processors, and OMEN was demonstrated to scale to 222.720 processors.

Patents

Books

Honors/Awards

Selected Works

References

External links