Gδ set

In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated in Germany with G for Gebiet (German: area, or neighborhood) meaning open set in this case and δ for Durchschnitt (German: intersection). The term inner limiting set is also used. Gδ sets, and their dual Fσ sets, are the second level of the Borel hierarchy.

Definition

In a topological space a Gδ set is a countable intersection of open sets. The Gδ sets are exactly the level \mathbf{\Pi}^0_2 sets of the Borel hierarchy.

Examples

A more elaborate example of a Gδ set is given by the following theorem:

Theorem: The set D=\left\{f \in C([0,1]) : f \text{ is not differentiable at any point of } [0,1] \right\} contains a dense Gδ subset of the metric space C([0,1]). (See Weierstrass function#Density of nowhere-differentiable functions.)

Properties

The notion of Gδ sets in metric (and topological) spaces is strongly related to the notion of completeness of the metric space as well as to the Baire category theorem. This is described by the Mazurkiewicz theorem:

Theorem (Mazurkiewicz): Let (\mathcal{X},\rho) be a complete metric space and A\subset\mathcal{X}. Then the following are equivalent:

  1. A is a Gδ subset of \mathcal{X}
  2. There is a metric \sigma on A which is equivalent to \rho | A such that (A,\sigma) is a complete metric space.

A key property of G_\delta sets is that they are the possible sets at which a function from a topological space to a metric space is continuous. Formally: The set of points where a function f is continuous is a G_\delta set. This is because continuity at a point p can be defined by a \Pi^0_2 formula, namely: For all positive integers n, there is an open set U containing p such that d(f(x),f(y)) < 1/n for all x, y in U. If a value of n is fixed, the set of p for which there is such a corresponding open U is itself an open set (being a union of open sets), and the universal quantifier on n corresponds to the (countable) intersection of these sets. In the real line, the converse holds as well; for any Gδ subset A of the real line, there is a function f: RR which is continuous exactly at the points in A. As a consequence, while it is possible for the irrationals to be the set of continuity points of a function (see the popcorn function), it is impossible to construct a function which is continuous only on the rational numbers.

Basic properties

The following results regard Polish spaces:[1]

Gδ space

A Gδ space is a topological space in which every closed set is a Gδ set (Johnson 1970). A normal space which is also a Gδ space is perfectly normal. Every metrizable space is perfectly normal, and every perfectly normal space is completely normal: neither implication is reversible.

See also

References

Notes

  1. Fremlin, D.H. (2003). "4, General Topology". Measure Theory, Volume 4. Petersburg, England: Digital Books Logistics. pp. 334–335. ISBN 0-9538129-4-4. Retrieved 1 April 2011.